zoukankan      html  css  js  c++  java
  • HashMap分析及散列的冲突处理

    转载原文地址:https://www.cnblogs.com/hapjin/p/4858505.html

    1,Hashing过程

    像二分查找、AVL树查找,这些查找算法的时间复杂度为O(logn),而对于哈希表而言,我们一般说它的查找时间复杂度为O(1)。那它是怎么实现的呢?这就是一个Hashing过程。

    在JAVA中,每个对象都有一个散列码,它是由Object类的hashCode()方法计算得到的(当然也可以覆盖Object的hashCode())。而我们可以在散列码的基础上,定义一个哈希函数,再对哈希函数计算出的结果求余,最终得到该对象在哈希表的位置。

    复制代码
     1 final int hash(Object k) {
     2         int h = hashSeed;
     3         if (0 != h && k instanceof String) {
     4             return sun.misc.Hashing.stringHash32((String) k);
     5         }
     6 
     7         h ^= k.hashCode();
     8         h ^= (h >>> 20) ^ (h >>> 12);
     9         return h ^ (h >>> 7) ^ (h >>> 4);
    10     }
    复制代码

    如上,哈希函数hash(Object k) 中用到了hashCode()。然后再经过进一步的特殊处理,得到一个最终的哈希值。哈希函数的定义是需要技艺的,因为它要保证尽量地将所有的Key均匀地分布,因此最好借助前人已实践的经验。

    当得到哈希值之后,根据该哈希值Mod N(求余)计算出其在哈希表的位置。

    static int indexFor(int h, int length) {
            // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
            return h & (length-1);
        }

    indexFor(int h, int length)实际上完成的就是求余操作。只不过求余操作涉及到除法,而这里可以通过移位操作来代替除法。即二者完成的功能都是一样的,移位的效率更高。

    哈希过程为什么需要先根据hashCode得到一个值(又称散列码),然后再对该值求余呢?

    在JAVA中,Object类的hashCode()方法返回的是由调用对象的内存地址导出的一个值,也即,当没有覆盖Object类中的equals() 和 hashCode()时,只有当两个对象的内存地址一样时,才认为两个对象是相等的。这显然不符合实际情况,比如Person类有 String id、String name.....显然在现实中是根据id(身份证)不同来判断两个人不同。因此,需要进一步根据hashCode()值来封装(如上面的 hash(Object k)方法),返回一个合理的散列码。

    那为什么又需要对得到的散列码求余呢?---上面的 indexFor(int h, int length)完成的功能

    在底层是用数组来存储<key, value>的,而我们得到的散列码可能很大(事实上散列码的范围非常广)

    而内存是有限的,不能分配为数组分配一块很大很大的空间,因此,存储<key, value>的数组空间相对较小。

    从而需要把 所有的散列码都 “约束” 到这个有效的数组空间中。----这也是导致冲突的根源

    为什么使用HashMap查找是O(1)呢?

    T value = hashmap.get(key)

    ①get(key)时,一步计算出该key所对应的底层数组array的 index  (相当于上面 hash(Object k ) 和 indexFor(int h, int length) 这两个函数完成的功能)

    ②value = array[index]

    因此,就认为查找的复杂度为O(1)

    2,冲突处理

    冲突处理主要分两种,一种是开放定址法,另一种是链地址法。HashMap的实现中采用的是链地址法。

    开放定址法有两种处理方式,一种是线性探测另一种是平方探测。

    线性探测:依次探测冲突位置的下一个位置。如,在哈希表的位置2处发生了冲突,则探测位置3处是否被使用了,若被使用了,则探测位置4……直至下一个被探测的位置为空(意味着还有位置可以插入元素---插入成功)或者探测了N-1(N为哈希表的长度)个元素又回到了原始的冲突位置处(意味着已经没有位置可供新元素插入了---插入失败)

    因此,插入一个元素时,最坏情况下的时间复杂度为O(N),因为它有可能探测了N-1个元素!

    平方探测:以平方大小来递增下一次待探测的位置。如,在哈希表位置2处发生了冲突,则探测 (1^2=1)位置3(2+1),若位置3被使用了,则探测(2^2=4) 位置6(2+4),若位置6被使用了,则探测(3^2=9)位置11(2+9=11)……平方探测法有一个特点:对于任何一个给定的素数N(假设哈希表的长度设置为素数),当计算( h(k) + i ^2 ) MOD N 时,随着 i 的增长,得到的结果是循环的。

    因此,当平方探测重复探测了某一个位置时,说明探测失败即已经没有位置可供新元素插入了,尽管此时哈希表并没有满。

    平方探测是跳着探测的,它忽略了一些位置,而这些位置可能是空的。即在哈希表仍未满的情况下,已经不能再插入新元素了

    最坏情况下,平方探测需要检测 N/2个位置,因此插入一个元素的最坏时间复杂度为O(N)。

    链地址法

    在HashMap的实现中,采用的链地址法来解决冲突,它有一个桶的概念:对于Entry数组而言,数组的每个元素处存储的是链表,而不是直接的Value。在链表中的每个元素才是真正的<Key, Value>。而一个链表,就是一个桶!因此HashMap最多可以有Entry.length 个桶。

    复制代码
    public class HashMap<K,V>
        extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable
    {
        static final Entry<?,?>[] EMPTY_TABLE = {};
        .....
        .....
    复制代码

    HashMap中有一个Entry数组,而Entry类是HashMap的内部类。由Entry类来封装实际的<Key, Value>

     static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;
            V value;
            Entry<K,V> next;
            int hash;

    HashMap中还有两个变量: int threshold 和 float loadFactor。loadFactor 默认是0.75,threshold作用如下:当HashMap中的元素个数超过threshold时,就会重新调整哈希的大小。

    void addEntry(int hash, K key, V value, int bucketIndex) {
            if ((size >= threshold) && (null != table[bucketIndex])) {
                resize(2 * table.length);

    而loadFactor作用是:指定threshold,一般情况下,哈希表的大小乘以0.75等于threshold。

     threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);

    在HashMap中,addEntry()方法添加新元素时,总是将新元素添加在链表的表头。而不是链表的其它位置。

    完。

  • 相关阅读:
    WPF常用TriggerAction用法 (一)
    一个WPF只能输入数字的行为。
    自定义panel实现,并实现item更改和移除动画。
    MVVM模式下弹出窗体
    ZAM 3D 制作简单的3D字幕 流程(二)
    ZAM 3D 制作简单的3D字幕 流程(一)
    ZAM 3D 制作3D动画字幕 用于Xaml导出
    Metro Win8风格的按钮(Filp翻转)
    WPF自动隐藏的消息框(鼠标放上去将一直显示,移开动画继续),提供normal和error两种边框。
    可分组的选择框控件(MVVM下)(Toggle样式 仿造单选框RadioButton,复选框CheckBox功能)
  • 原文地址:https://www.cnblogs.com/robertsun/p/7943618.html
Copyright © 2011-2022 走看看