zoukankan      html  css  js  c++  java
  • POJ-3186 Treats for the Cows (区间DP)

    Description

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

    The treats are interesting for many reasons:

    The treats are numbered 1..N and stored sequentially in single file
    in a long box that is open at both ends. On any day, FJ can retrieve
    one treat from either end of his stash of treats.
    Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

    Given the values v(i) of each of the treats lined up in order of the
    index i in their box, what is the greatest value FJ can receive for
    them if he orders their sale optimally?

    The first treat is sold on day 1 and has age a=1. Each subsequent day
    increases the age by 1.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample Input

    5
    1
    3
    1
    5
    2

    Sample Output

    43


    思路:

    • 典型的区间DP,dp(i, j)表示从左取i个,从右取j个的最大值,即取区间(1~i)U(j~n)的最大值。
    • 状态转移方程为dp(i, j) = max(dp(i-1, j)+(i+j)*a[i], dp(i, j-1)+(i+j)*a[n-j+1])。
    • 最大值就是max(dp(0, n), dp(1, n-1), ……, dp(n-1, 1), dp(n, 0))。
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 #include<set>
     7 #include<map>
     8 #include<queue>
     9 
    10 using namespace std;
    11 int dp[2010][2010], a[2010];
    12 
    13 int main() {
    14     std::ios::sync_with_stdio(false);
    15     int n;
    16     while(cin>>n) {
    17         memset(dp, 0, sizeof(dp));
    18         memset(a, 0, sizeof(a));
    19         for (int i = 1; i <= n; ++i) cin>>a[i];
    20         for (int i = 1; i <= n; ++i){
    21             dp[i][0] = dp[i-1][0] + a[i]*i;
    22             dp[0][i] = dp[0][i-1] + a[n-i+1]*i;
    23         }
    24         for (int i = 1; i <= n; ++i)
    25             for (int j = 1; j <= n; ++j){
    26                 if (i+j > n) break;
    27                 dp[i][j] = max(dp[i-1][j]+(i+j)*a[i], dp[i][j-1]+(i+j)*a[n-j+1]);
    28             }
    29         int ans = dp[0][n];
    30         for (int i = 1; i <= n; ++i)
    31             ans = max(dp[i][n-i], ans);
    32         cout<<ans<<endl;
    33     }
    34     return 0;
    35 }
     

    看了别人的写法发现自己这种写法不够好,而且没有完全掌握好区间DP。用dp(i, j)表示[i, j]的最大值,从子问题推出最终解显然是更好的写法

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 #include<set>
     7 #include<map>
     8 #include<queue>
     9 
    10 using namespace std;
    11 
    12 int dp[2010][2010], a[2010];  
    13 int main() {
    14     std::ios::sync_with_stdio(false);  
    15     int n;
    16     cin>>n;  
    17     for(int i = 1; i <= n; ++i)  
    18         cin>>a[i];
    19     for(int i = n; i >= 1; --i)  
    20         for(int j = i; j <= n; ++j)  
    21             dp[i][j] = max(dp[i+1][j]+a[i]*(n+i-j), dp[i][j-1]+a[j]*(n+i-j));  
    22     cout<<dp[1][n]<<endl;
    23     return 0;  
    24 }  
     
  • 相关阅读:
    超级简单的分屏控件【自定义PictureBox 继承于UserControl】
    《(学习笔记)两天进步一点点》(3)——应用BindingSource实现数据同步
    《(学习笔记)两天进步一点点》(5)——几个比较小的类,但很实用
    【唠叨两句】如何将一张树型结构的Excel表格中的数据导入到多张数据库表中
    《(学习笔记)两天进步一点点》(2) ——BindingSource基础操作
    微软通用类库——DbHelper
    经典的SQL语句
    ToString 中的常见格式
    【学习笔记】SQL Server 中的批量复制操作 (ADO.NET)
    《(学习笔记)两天进步一点点》(1)——Windows控件DGV
  • 原文地址:https://www.cnblogs.com/robin1998/p/6359119.html
Copyright © 2011-2022 走看看