zoukankan      html  css  js  c++  java
  • POJ-3186 Treats for the Cows (区间DP)

    Description

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

    The treats are interesting for many reasons:

    The treats are numbered 1..N and stored sequentially in single file
    in a long box that is open at both ends. On any day, FJ can retrieve
    one treat from either end of his stash of treats.
    Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

    Given the values v(i) of each of the treats lined up in order of the
    index i in their box, what is the greatest value FJ can receive for
    them if he orders their sale optimally?

    The first treat is sold on day 1 and has age a=1. Each subsequent day
    increases the age by 1.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample Input

    5
    1
    3
    1
    5
    2

    Sample Output

    43


    思路:

    • 典型的区间DP,dp(i, j)表示从左取i个,从右取j个的最大值,即取区间(1~i)U(j~n)的最大值。
    • 状态转移方程为dp(i, j) = max(dp(i-1, j)+(i+j)*a[i], dp(i, j-1)+(i+j)*a[n-j+1])。
    • 最大值就是max(dp(0, n), dp(1, n-1), ……, dp(n-1, 1), dp(n, 0))。
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 #include<set>
     7 #include<map>
     8 #include<queue>
     9 
    10 using namespace std;
    11 int dp[2010][2010], a[2010];
    12 
    13 int main() {
    14     std::ios::sync_with_stdio(false);
    15     int n;
    16     while(cin>>n) {
    17         memset(dp, 0, sizeof(dp));
    18         memset(a, 0, sizeof(a));
    19         for (int i = 1; i <= n; ++i) cin>>a[i];
    20         for (int i = 1; i <= n; ++i){
    21             dp[i][0] = dp[i-1][0] + a[i]*i;
    22             dp[0][i] = dp[0][i-1] + a[n-i+1]*i;
    23         }
    24         for (int i = 1; i <= n; ++i)
    25             for (int j = 1; j <= n; ++j){
    26                 if (i+j > n) break;
    27                 dp[i][j] = max(dp[i-1][j]+(i+j)*a[i], dp[i][j-1]+(i+j)*a[n-j+1]);
    28             }
    29         int ans = dp[0][n];
    30         for (int i = 1; i <= n; ++i)
    31             ans = max(dp[i][n-i], ans);
    32         cout<<ans<<endl;
    33     }
    34     return 0;
    35 }
     

    看了别人的写法发现自己这种写法不够好,而且没有完全掌握好区间DP。用dp(i, j)表示[i, j]的最大值,从子问题推出最终解显然是更好的写法

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 #include<set>
     7 #include<map>
     8 #include<queue>
     9 
    10 using namespace std;
    11 
    12 int dp[2010][2010], a[2010];  
    13 int main() {
    14     std::ios::sync_with_stdio(false);  
    15     int n;
    16     cin>>n;  
    17     for(int i = 1; i <= n; ++i)  
    18         cin>>a[i];
    19     for(int i = n; i >= 1; --i)  
    20         for(int j = i; j <= n; ++j)  
    21             dp[i][j] = max(dp[i+1][j]+a[i]*(n+i-j), dp[i][j-1]+a[j]*(n+i-j));  
    22     cout<<dp[1][n]<<endl;
    23     return 0;  
    24 }  
     
  • 相关阅读:
    qt 自动产生 Guid 方法
    在QTableWidget中添加QCheckBox并使其居中显示(转)
    QTableWidget控件总结
    QTableWidget 使用及美化_QtableWidget_QtableView滚动条宽度及样式
    QT添加二次确认功能,QMessageBox的使用
    QTableWidget详解(样式、右键菜单、表头塌陷、多选等) 2013-10-23 10:54:04
    QTableWidget的美化
    004PHP基础知识——数据类型(一)
    laravel中修改默认时区
    laravel中Crypt加密方法
  • 原文地址:https://www.cnblogs.com/robin1998/p/6359119.html
Copyright © 2011-2022 走看看