zoukankan      html  css  js  c++  java
  • HDU-1540 Tunnel Warfare 【线段树+单点修改+区间更新】

    Problem Description
    During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast areas of north China Plain. Generally speaking, villages connected by tunnels lay in a line. Except the two at the ends, every village was directly connected with two neighboring ones.

    Frequently the invaders launched attack on some of the villages and destroyed the parts of tunnels in them. The Eighth Route Army commanders requested the latest connection state of the tunnels and villages. If some villages are severely isolated, restoration of connection must be done immediately!
     
    Input
    The first line of the input contains two positive integers n and m (n, m ≤ 50,000) indicating the number of villages and events. Each of the next m lines describes an event.

    There are three different events described in different format shown below:

    D x: The x-th village was destroyed.

    Q x: The Army commands requested the number of villages that x-th village was directly or indirectly connected with including itself.

    R: The village destroyed last was rebuilt.
     
    Output
    Output the answer to each of the Army commanders’ request in order on a separate line.
     
    Sample Input
    7 9
    D 3
    D 6
    D 5
    Q 4
    Q 5
    R
    Q 4
    R
    Q 4
     
    Sample Output
    1
    0
    2
    4
     

     
    思路:
    一道感觉并不是很难的线段树,菜鸡看着别人的题解按自己的习惯勉强写完的,真的菜啊。
    lm[o], rm[o], sum[o],分别代表区间o左、右端点开始的最长连续区间,该区间内的最长连续区间。
     
    Code:
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define INF 0x3f3f3f3f
     4 #define M(a, b) memset(a, b, sizeof(a))
     5 #define lson o<<1
     6 #define rson o<<1|1
     7 const int maxn = 50000 + 10;
     8 int lm[maxn<<2], rm[maxn<<2], sum[maxn<<2], v, p;
     9 int S[maxn], top;
    10 
    11 void build(int o, int L, int R) {
    12     lm[o] = rm[o] = sum[o] = R - L + 1;
    13     if (L == R) return;
    14     else {
    15         int M = (L + R) >> 1;
    16         build(lson, L, M);
    17         build(rson, M+1, R);
    18     }
    19 }
    20 
    21 void update(int o, int L, int R) {
    22     int M = (L + R) >> 1;
    23     if (L == R) {
    24         lm[o] = rm[o] = sum[o] = v;
    25         return;
    26     }
    27     else {
    28         if (p <= M) update(lson, L, M);
    29         else update(rson, M+1, R);
    30     }
    31     lm[o] = lm[lson]; rm[o] = rm[rson];
    32     sum[o] = max(rm[lson]+lm[rson], max(sum[lson], sum[rson]));
    33     if (lm[lson] == M - L + 1) lm[o] += lm[rson];
    34     if (rm[rson] == R - M) rm[o] += rm[lson];
    35 }
    36 
    37 int query(int o, int L, int R, int x) {
    38     if (L == R || sum[o] == 0 || sum[o] == R - L + 1) return sum[o];
    39     else {
    40         int M = (L + R) >> 1;
    41         if (x <= M) {
    42             if (x >= M - rm[lson] + 1) 
    43                 return query(lson, L, M, x) + query(rson, M+1, R, M+1);
    44             else return query(lson, L, M, x);
    45         }
    46         else {
    47             if (x <= M + lm[rson]) 
    48                 return query(rson, M+1, R, x) + query(lson, L, M, M);
    49             else return query(rson, M+1, R, x);
    50         }
    51     }
    52 }
    53 
    54 int main() {
    55     int n, m;
    56     while(~scanf("%d%d", &n, &m)) {
    57         build(1, 1, n);
    58         char op[3];
    59         top = 0;
    60         while(m--) {
    61             scanf("%s", op);
    62             if (op[0] == 'D') {
    63                 scanf("%d", &p);
    64                 S[top++] = p;
    65                 v = 0;
    66                 update(1, 1, n);
    67             }
    68             else if (op[0] == 'R') {
    69                 if (top == 0) continue;
    70                 p = S[--top];
    71                 v = 1;
    72                 update(1, 1, n);
    73             }
    74             else {
    75                 scanf("%d", &p);
    76                 printf("%d
    ", query(1, 1, n, p));
    77             }
    78         }
    79     }
    80 
    81     return 0;
    82 }
  • 相关阅读:
    父进程pid和子进程pid的大小关系
    static 和extern关键字
    linux源码下载
    tar命令
    USB开发——内核USB驱动+libusb开发方法
    microchip PIC芯片使用方法
    android下4G上网卡
    Modem常用概念
    4G上网卡NIDS拨号之Rmnet驱动
    Uboot源码解析
  • 原文地址:https://www.cnblogs.com/robin1998/p/6505712.html
Copyright © 2011-2022 走看看