zoukankan      html  css  js  c++  java
  • HDU-1540 Tunnel Warfare 【线段树+单点修改+区间更新】

    Problem Description
    During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast areas of north China Plain. Generally speaking, villages connected by tunnels lay in a line. Except the two at the ends, every village was directly connected with two neighboring ones.

    Frequently the invaders launched attack on some of the villages and destroyed the parts of tunnels in them. The Eighth Route Army commanders requested the latest connection state of the tunnels and villages. If some villages are severely isolated, restoration of connection must be done immediately!
     
    Input
    The first line of the input contains two positive integers n and m (n, m ≤ 50,000) indicating the number of villages and events. Each of the next m lines describes an event.

    There are three different events described in different format shown below:

    D x: The x-th village was destroyed.

    Q x: The Army commands requested the number of villages that x-th village was directly or indirectly connected with including itself.

    R: The village destroyed last was rebuilt.
     
    Output
    Output the answer to each of the Army commanders’ request in order on a separate line.
     
    Sample Input
    7 9
    D 3
    D 6
    D 5
    Q 4
    Q 5
    R
    Q 4
    R
    Q 4
     
    Sample Output
    1
    0
    2
    4
     

     
    思路:
    一道感觉并不是很难的线段树,菜鸡看着别人的题解按自己的习惯勉强写完的,真的菜啊。
    lm[o], rm[o], sum[o],分别代表区间o左、右端点开始的最长连续区间,该区间内的最长连续区间。
     
    Code:
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define INF 0x3f3f3f3f
     4 #define M(a, b) memset(a, b, sizeof(a))
     5 #define lson o<<1
     6 #define rson o<<1|1
     7 const int maxn = 50000 + 10;
     8 int lm[maxn<<2], rm[maxn<<2], sum[maxn<<2], v, p;
     9 int S[maxn], top;
    10 
    11 void build(int o, int L, int R) {
    12     lm[o] = rm[o] = sum[o] = R - L + 1;
    13     if (L == R) return;
    14     else {
    15         int M = (L + R) >> 1;
    16         build(lson, L, M);
    17         build(rson, M+1, R);
    18     }
    19 }
    20 
    21 void update(int o, int L, int R) {
    22     int M = (L + R) >> 1;
    23     if (L == R) {
    24         lm[o] = rm[o] = sum[o] = v;
    25         return;
    26     }
    27     else {
    28         if (p <= M) update(lson, L, M);
    29         else update(rson, M+1, R);
    30     }
    31     lm[o] = lm[lson]; rm[o] = rm[rson];
    32     sum[o] = max(rm[lson]+lm[rson], max(sum[lson], sum[rson]));
    33     if (lm[lson] == M - L + 1) lm[o] += lm[rson];
    34     if (rm[rson] == R - M) rm[o] += rm[lson];
    35 }
    36 
    37 int query(int o, int L, int R, int x) {
    38     if (L == R || sum[o] == 0 || sum[o] == R - L + 1) return sum[o];
    39     else {
    40         int M = (L + R) >> 1;
    41         if (x <= M) {
    42             if (x >= M - rm[lson] + 1) 
    43                 return query(lson, L, M, x) + query(rson, M+1, R, M+1);
    44             else return query(lson, L, M, x);
    45         }
    46         else {
    47             if (x <= M + lm[rson]) 
    48                 return query(rson, M+1, R, x) + query(lson, L, M, M);
    49             else return query(rson, M+1, R, x);
    50         }
    51     }
    52 }
    53 
    54 int main() {
    55     int n, m;
    56     while(~scanf("%d%d", &n, &m)) {
    57         build(1, 1, n);
    58         char op[3];
    59         top = 0;
    60         while(m--) {
    61             scanf("%s", op);
    62             if (op[0] == 'D') {
    63                 scanf("%d", &p);
    64                 S[top++] = p;
    65                 v = 0;
    66                 update(1, 1, n);
    67             }
    68             else if (op[0] == 'R') {
    69                 if (top == 0) continue;
    70                 p = S[--top];
    71                 v = 1;
    72                 update(1, 1, n);
    73             }
    74             else {
    75                 scanf("%d", &p);
    76                 printf("%d
    ", query(1, 1, n, p));
    77             }
    78         }
    79     }
    80 
    81     return 0;
    82 }
  • 相关阅读:
    [ Algorithm ] N次方算法 N Square 动态规划解决
    [ Algorithm ] LCS 算法 动态规划解决
    sql server全文索引使用中的小坑
    关于join时显示no join predicate的那点事
    使用scvmm 2012的动态优化管理群集资源
    附加数据库后无法创建发布,error 2812 解决
    浅谈Virtual Machine Manager(SCVMM 2012) cluster 过载状态检测算法
    windows 2012 r2下安装sharepoint 2013错误解决
    sql server 2012 数据引擎任务调度算法解析(下)
    sql server 2012 数据引擎任务调度算法解析(上)
  • 原文地址:https://www.cnblogs.com/robin1998/p/6505712.html
Copyright © 2011-2022 走看看