zoukankan      html  css  js  c++  java
  • POJ-1273 Drainage Ditches 【最大流】

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10

    Sample Output

    50
    
    

    题解:
    裸的最大流

    代码:
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<queue>
     5 #include<stack>
     6 #include<algorithm>
     7 #include<vector>
     8 using namespace std;
     9 #define INF 0x3f3f3f3f
    10 #define M(a, b) memset(a, b, sizeof(a))
    11 const int N = 200 + 5;
    12 struct Edge {
    13     int from, to, cap, flow;
    14 };
    15 
    16 struct Dinic {
    17     int n, m, s, t;
    18     vector<Edge> edges;
    19     vector<int> G[N];
    20     bool vis[N];
    21     int d[N], cur[N];
    22 
    23     void init(int n) {
    24         for (int i = 0; i <= n; ++i) G[i].clear();
    25         edges.clear();
    26         M(d, 0);
    27     }
    28 
    29     void AddEdge(int from, int to, int cap) {
    30         edges.push_back((Edge){from, to, cap, 0});
    31         edges.push_back((Edge){to, from, 0, 0});
    32         m = edges.size();
    33         G[from].push_back(m-2); G[to].push_back(m-1);
    34     }
    35 
    36     bool bfs() {
    37         M(vis, 0);
    38         queue<int> q;
    39         q.push(s);
    40         d[s] = 0; vis[s] = 1;
    41         while (!q.empty()) {
    42             int x = q.front(); q.pop();
    43             for (int i = 0; i < G[x].size(); ++i) {
    44                 Edge &e = edges[G[x][i]];
    45                 if (!vis[e.to] && e.cap > e.flow) {
    46                     vis[e.to] = 1;
    47                     d[e.to] = d[x] + 1;
    48                     q.push(e.to);
    49                 }
    50             }
    51         }
    52         return vis[t];
    53     }
    54 
    55     int dfs(int x, int a) {
    56         if (x == t || a == 0) return a;
    57         int flow = 0, f;
    58         for (int &i = cur[x]; i < G[x].size(); ++i) {
    59             Edge &e = edges[G[x][i]];
    60             if (d[e.to] == d[x] + 1 && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0) {
    61                 e.flow += f;
    62                 edges[G[x][i]^1].flow -= f;
    63                 flow += f; a -= f;
    64                 if (a == 0) break;
    65             }
    66         }
    67         return flow;
    68     }
    69 
    70     int Maxflow(int s, int t) {
    71         this->s = s; this->t = t;
    72         int flow = 0;
    73         while (bfs()) {
    74             M(cur, 0);
    75             flow += dfs(s, INF);
    76         }
    77         return flow;
    78     }
    79 
    80 }solver;
    81 
    82 int main() {
    83     int m, n;
    84     while (~scanf("%d%d", &m, &n)) {
    85         solver.init(n);
    86         int u, w, v;
    87         for (int i = 0; i < m; ++i) {
    88             scanf("%d%d%d", &u, &v, &w);
    89             solver.AddEdge(u, v, w);
    90         }
    91         printf("%d
    ", solver.Maxflow(1, n));
    92     }
    93 
    94     return 0;
    95 }
  • 相关阅读:
    Educational Codeforces Round 47 (Rated for Div. 2) :A. Game Shopping
    Codeforces Round #482 (Div. 2) : Kuro and GCD and XOR and SUM (寻找最大异或值)
    python+locust性能测试(三)之No Web UI模式下运行Locust
    python+locust性能测试(二)之locust深入使用
    python+locust性能测试(一)之locust性能测试入门
    python Mqtt 的安装及使用
    Mysql性能优化(四)--MySQL优化
    uiautomator2+ tesseract 智能识别文字实现手游辅助外挂,打怪刷装备快人一步
    python实用小技之数据结构
    Mysql性能优化(三)--explain返回的结果说明
  • 原文地址:https://www.cnblogs.com/robin1998/p/6740538.html
Copyright © 2011-2022 走看看