zoukankan      html  css  js  c++  java
  • Android中的Parcel机制(上)

    一.先从Serialize说起

             我们都知道JAVA中的Serialize机制,译成串行化、序列化……,其作用是能将数据对象存入字节流当中,在需要时重新生成对象。主要应用是利用外部存储设备保存对象状态,以及通过网络传输对象等。

     

    二.Android中的新的序列化机制

             在Android系统中,定位为针对内存受限的设备,因此对性能要求更高,另外系统中采用了新的IPC(进程间通信)机制,必然要求使用性能更出色的对象传输方式。在这样的环境下,Parcel被设计出来,其定位就是轻量级的高效的对象序列化和反序列化机制。

     

    三.Parcel类的背后

    在Framework中有parcel类,源码路径是:

    Frameworks/base/core/java/android/os/Parcel.java

    典型的源码片断如下:

      
    /** 
     * Write an integer value into the parcel at the current dataPosition(), 
     * growing dataCapacity() if needed. 
     */  
    public final native void writeInt(int val);  
      
    /** 
     * Write a long integer value into the parcel at the current dataPosition(), 
     * growing dataCapacity() if needed. 
     */  
    public final native void writeLong(long val);  

    从中我们看到,从这个源程序文件中我们看不到真正的功能是如何实现的,必须透过JNI往下走了。于是,Frameworks/base/core/jni/android_util_Binder.cpp中找到了线索

    static void android_os_Parcel_writeInt(JNIEnv* env, jobject clazz, jint val)  
    {  
        Parcel* parcel = parcelForJavaObject(env, clazz);  
        if (parcel != NULL) {  
            const status_t err = parcel->writeInt32(val);  
            if (err != NO_ERROR) {  
                jniThrowException(env, "java/lang/OutOfMemoryError", NULL);  
            }  
        }  
    }  
      
    static void android_os_Parcel_writeLong(JNIEnv* env, jobject clazz, jlong val)  
    {  
        Parcel* parcel = parcelForJavaObject(env, clazz);  
        if (parcel != NULL) {  
            const status_t err = parcel->writeInt64(val);  
            if (err != NO_ERROR) {  
                jniThrowException(env, "java/lang/OutOfMemoryError", NULL);  
            }  
        }  
    }  

    从这里我们可以得到的信息是函数的实现依赖于Parcel指针,因此还需要找到Parcel的类定义,注意,这里的类已经是用C++语言实现的了。

    找到Frameworks/base/include/binder/parcel.h和Frameworks/base/libs/binder/parcel.cpp。终于找到了最终的实现代码了。

    有兴趣的朋友可以自己读一下,不难理解,这里把基本的思路总结一下:

    1.       整个读写全是在内存中进行,主要是通过malloc()、realloc()、memcpy()等内存操作进行,所以效率比JAVA序列化中使用外部存储器会高很多;

    2.       读写时是4字节对齐的,可以看到#define PAD_SIZE(s) (((s)+3)&~3)这句宏定义就是在做这件事情;

    3.       如果预分配的空间不够时newSize = ((mDataSize+len)*3)/2;会一次多分配50%;

    4.       对于普通数据,使用的是mData内存地址,对于IBinder类型的数据以及FileDescriptor使用的是mObjects内存地址。后者是通过flatten_binder()和unflatten_binder()实现的,目的是反序列化时读出的对象就是原对象而不用重新new一个新对象。

     

    好了,这就是Parcel背后的动作,全是在一块内存里进行读写操作,就不啰嗦了,把parcel的代码贴在这供没有源码的朋友参考吧。接下来我会用一个小DEMO演示一下Parcel类在应用程序中的使用,详见《Android中的Parcel机制(下)》。

    /* 
     * Copyright (C) 2005 The Android Open Source Project 
     * 
     * Licensed under the Apache License, Version 2.0 (the "License"); 
     * you may not use this file except in compliance with the License. 
     * You may obtain a copy of the License at 
     * 
     *      http://www.apache.org/licenses/LICENSE-2.0 
     * 
     * Unless required by applicable law or agreed to in writing, software 
     * distributed under the License is distributed on an "AS IS" BASIS, 
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
     * See the License for the specific language governing permissions and 
     * limitations under the License. 
     */  
      
    #ifndef ANDROID_PARCEL_H  
    #define ANDROID_PARCEL_H  
      
    #include <cutils/native_handle.h>  
    #include <utils/Errors.h>  
    #include <utils/RefBase.h>  
    #include <utils/String16.h>  
    #include <utils/Vector.h>  
      
    // ---------------------------------------------------------------------------  
    namespace android {  
      
    class IBinder;  
    class ProcessState;  
    class String8;  
    class TextOutput;  
    class Flattenable;  
      
    struct flat_binder_object;  // defined in support_p/binder_module.h  
      
    class Parcel  
    {  
    public:  
                            Parcel();  
                            ~Parcel();  
          
        const uint8_t*      data() const;  
        size_t              dataSize() const;  
        size_t              dataAvail() const;  
        size_t              dataPosition() const;  
        size_t              dataCapacity() const;  
          
        status_t            setDataSize(size_t size);  
        void                setDataPosition(size_t pos) const;  
        status_t            setDataCapacity(size_t size);  
          
        status_t            setData(const uint8_t* buffer, size_t len);  
      
        status_t            appendFrom(Parcel *parcel, size_t start, size_t len);  
      
        bool                hasFileDescriptors() const;  
      
        status_t            writeInterfaceToken(const String16& interface);  
        bool                enforceInterface(const String16& interface) const;  
        bool                checkInterface(IBinder*) const;      
      
        void                freeData();  
      
        const size_t*       objects() const;  
        size_t              objectsCount() const;  
          
        status_t            errorCheck() const;  
        void                setError(status_t err);  
          
        status_t            write(const void* data, size_t len);  
        void*               writeInplace(size_t len);  
        status_t            writeUnpadded(const void* data, size_t len);  
        status_t            writeInt32(int32_t val);  
        status_t            writeInt64(int64_t val);  
        status_t            writeFloat(float val);  
        status_t            writeDouble(double val);  
        status_t            writeIntPtr(intptr_t val);  
        status_t            writeCString(const char* str);  
        status_t            writeString8(const String8& str);  
        status_t            writeString16(const String16& str);  
        status_t            writeString16(const char16_t* str, size_t len);  
        status_t            writeStrongBinder(const sp<IBinder>& val);  
        status_t            writeWeakBinder(const wp<IBinder>& val);  
        status_t            write(const Flattenable& val);  
      
        // Place a native_handle into the parcel (the native_handle's file-  
        // descriptors are dup'ed, so it is safe to delete the native_handle  
        // when this function returns).   
        // Doesn't take ownership of the native_handle.  
        status_t            writeNativeHandle(const native_handle* handle);  
          
        // Place a file descriptor into the parcel.  The given fd must remain  
        // valid for the lifetime of the parcel.  
        status_t            writeFileDescriptor(int fd);  
          
        // Place a file descriptor into the parcel.  A dup of the fd is made, which  
        // will be closed once the parcel is destroyed.  
        status_t            writeDupFileDescriptor(int fd);  
          
        status_t            writeObject(const flat_binder_object& val, bool nullMetaData);  
      
        void                remove(size_t start, size_t amt);  
          
        status_t            read(void* outData, size_t len) const;  
        const void*         readInplace(size_t len) const;  
        int32_t             readInt32() const;  
        status_t            readInt32(int32_t *pArg) const;  
        int64_t             readInt64() const;  
        status_t            readInt64(int64_t *pArg) const;  
        float               readFloat() const;  
        status_t            readFloat(float *pArg) const;  
        double              readDouble() const;  
        status_t            readDouble(double *pArg) const;  
        intptr_t            readIntPtr() const;  
        status_t            readIntPtr(intptr_t *pArg) const;  
      
        const char*         readCString() const;  
        String8             readString8() const;  
        String16            readString16() const;  
        const char16_t*     readString16Inplace(size_t* outLen) const;  
        sp<IBinder>         readStrongBinder() const;  
        wp<IBinder>         readWeakBinder() const;  
        status_t            read(Flattenable& val) const;  
          
        // Retrieve native_handle from the parcel. This returns a copy of the  
        // parcel's native_handle (the caller takes ownership). The caller  
        // must free the native_handle with native_handle_close() and   
        // native_handle_delete().  
        native_handle*     readNativeHandle() const;  
      
          
        // Retrieve a file descriptor from the parcel.  This returns the raw fd  
        // in the parcel, which you do not own -- use dup() to get your own copy.  
        int                 readFileDescriptor() const;  
          
        const flat_binder_object* readObject(bool nullMetaData) const;  
      
        // Explicitly close all file descriptors in the parcel.  
        void                closeFileDescriptors();  
          
        typedef void        (*release_func)(Parcel* parcel,  
                                            const uint8_t* data, size_t dataSize,  
                                            const size_t* objects, size_t objectsSize,  
                                            void* cookie);  
                              
        const uint8_t*      ipcData() const;  
        size_t              ipcDataSize() const;  
        const size_t*       ipcObjects() const;  
        size_t              ipcObjectsCount() const;  
        void                ipcSetDataReference(const uint8_t* data, size_t dataSize,  
                                                const size_t* objects, size_t objectsCount,  
                                                release_func relFunc, void* relCookie);  
          
        void                print(TextOutput& to, uint32_t flags = 0) const;  
              
    private:  
                            Parcel(const Parcel& o);  
        Parcel&             operator=(const Parcel& o);  
          
        status_t            finishWrite(size_t len);  
        void                releaseObjects();  
        void                acquireObjects();  
        status_t            growData(size_t len);  
        status_t            restartWrite(size_t desired);  
        status_t            continueWrite(size_t desired);  
        void                freeDataNoInit();  
        void                initState();  
        void                scanForFds() const;  
                              
        template<class T>  
        status_t            readAligned(T *pArg) const;  
      
        template<class T>   T readAligned() const;  
      
        template<class T>  
        status_t            writeAligned(T val);  
      
        status_t            mError;  
        uint8_t*            mData;  
        size_t              mDataSize;  
        size_t              mDataCapacity;  
        mutable size_t      mDataPos;  
        size_t*             mObjects;  
        size_t              mObjectsSize;  
        size_t              mObjectsCapacity;  
        mutable size_t      mNextObjectHint;  
      
        mutable bool        mFdsKnown;  
        mutable bool        mHasFds;  
          
        release_func        mOwner;  
        void*               mOwnerCookie;  
    };  
      
    // ---------------------------------------------------------------------------  
      
    inline TextOutput& operator<<(TextOutput& to, const Parcel& parcel)  
    {  
        parcel.print(to);  
        return to;  
    }  
      
    // ---------------------------------------------------------------------------  
      
    // Generic acquire and release of objects.  
    void acquire_object(const sp<ProcessState>& proc,  
                        const flat_binder_object& obj, const void* who);  
    void release_object(const sp<ProcessState>& proc,  
                        const flat_binder_object& obj, const void* who);  
      
    void flatten_binder(const sp<ProcessState>& proc,  
                        const sp<IBinder>& binder, flat_binder_object* out);  
    void flatten_binder(const sp<ProcessState>& proc,  
                        const wp<IBinder>& binder, flat_binder_object* out);  
    status_t unflatten_binder(const sp<ProcessState>& proc,  
                              const flat_binder_object& flat, sp<IBinder>* out);  
    status_t unflatten_binder(const sp<ProcessState>& proc,  
                              const flat_binder_object& flat, wp<IBinder>* out);  
      
    }; // namespace android  
      
    // ---------------------------------------------------------------------------  
      
    #endif // ANDROID_PARCEL_H  

     下面是函数的实现

    /* 
     * Copyright (C) 2005 The Android Open Source Project 
     * 
     * Licensed under the Apache License, Version 2.0 (the "License"); 
     * you may not use this file except in compliance with the License. 
     * You may obtain a copy of the License at 
     * 
     *      http://www.apache.org/licenses/LICENSE-2.0 
     * 
     * Unless required by applicable law or agreed to in writing, software 
     * distributed under the License is distributed on an "AS IS" BASIS, 
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
     * See the License for the specific language governing permissions and 
     * limitations under the License. 
     */  
      
    #define LOG_TAG "Parcel"  
    //#define LOG_NDEBUG 0  
      
    #include <binder/Parcel.h>  
      
    #include <binder/Binder.h>  
    #include <binder/BpBinder.h>  
    #include <utils/Debug.h>  
    #include <binder/ProcessState.h>  
    #include <utils/Log.h>  
    #include <utils/String8.h>  
    #include <utils/String16.h>  
    #include <utils/TextOutput.h>  
    #include <utils/misc.h>  
    #include <utils/Flattenable.h>  
      
    #include <private/binder/binder_module.h>  
      
    #include <stdio.h>  
    #include <stdlib.h>  
    #include <stdint.h>  
      
    #ifndef INT32_MAX  
    #define INT32_MAX ((int32_t)(2147483647))  
    #endif  
      
    #define LOG_REFS(...)  
    //#define LOG_REFS(...) LOG(LOG_DEBUG, "Parcel", __VA_ARGS__)  
      
    // ---------------------------------------------------------------------------  
      
    #define PAD_SIZE(s) (((s)+3)&~3)  
      
    // XXX This can be made public if we want to provide  
    // support for typed data.  
    struct small_flat_data  
    {  
        uint32_t type;  
        uint32_t data;  
    };  
      
    namespace android {  
      
    void acquire_object(const sp<ProcessState>& proc,  
        const flat_binder_object& obj, const void* who)  
    {  
        switch (obj.type) {  
            case BINDER_TYPE_BINDER:  
                if (obj.binder) {  
                    LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);  
                    static_cast<IBinder*>(obj.cookie)->incStrong(who);  
                }  
                return;  
            case BINDER_TYPE_WEAK_BINDER:  
                if (obj.binder)  
                    static_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);  
                return;  
            case BINDER_TYPE_HANDLE: {  
                const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);  
                if (b != NULL) {  
                    LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());  
                    b->incStrong(who);  
                }  
                return;  
            }  
            case BINDER_TYPE_WEAK_HANDLE: {  
                const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);  
                if (b != NULL) b.get_refs()->incWeak(who);  
                return;  
            }  
            case BINDER_TYPE_FD: {  
                // intentionally blank -- nothing to do to acquire this, but we do  
                // recognize it as a legitimate object type.  
                return;  
            }  
        }  
      
        LOGD("Invalid object type 0x%08lx", obj.type);  
    }  
      
    void release_object(const sp<ProcessState>& proc,  
        const flat_binder_object& obj, const void* who)  
    {  
        switch (obj.type) {  
            case BINDER_TYPE_BINDER:  
                if (obj.binder) {  
                    LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);  
                    static_cast<IBinder*>(obj.cookie)->decStrong(who);  
                }  
                return;  
            case BINDER_TYPE_WEAK_BINDER:  
                if (obj.binder)  
                    static_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);  
                return;  
            case BINDER_TYPE_HANDLE: {  
                const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);  
                if (b != NULL) {  
                    LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());  
                    b->decStrong(who);  
                }  
                return;  
            }  
            case BINDER_TYPE_WEAK_HANDLE: {  
                const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);  
                if (b != NULL) b.get_refs()->decWeak(who);  
                return;  
            }  
            case BINDER_TYPE_FD: {  
                if (obj.cookie != (void*)0) close(obj.handle);  
                return;  
            }  
        }  
      
        LOGE("Invalid object type 0x%08lx", obj.type);  
    }  
      
    inline static status_t finish_flatten_binder(  
        const sp<IBinder>& binder, const flat_binder_object& flat, Parcel* out)  
    {  
        return out->writeObject(flat, false);  
    }  
      
    status_t flatten_binder(const sp<ProcessState>& proc,  
        const sp<IBinder>& binder, Parcel* out)  
    {  
        flat_binder_object obj;  
          
        obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  
        if (binder != NULL) {  
            IBinder *local = binder->localBinder();  
            if (!local) {  
                BpBinder *proxy = binder->remoteBinder();  
                if (proxy == NULL) {  
                    LOGE("null proxy");  
                }  
                const int32_t handle = proxy ? proxy->handle() : 0;  
                obj.type = BINDER_TYPE_HANDLE;  
                obj.handle = handle;  
                obj.cookie = NULL;  
            } else {  
                obj.type = BINDER_TYPE_BINDER;  
                obj.binder = local->getWeakRefs();  
                obj.cookie = local;  
            }  
        } else {  
            obj.type = BINDER_TYPE_BINDER;  
            obj.binder = NULL;  
            obj.cookie = NULL;  
        }  
          
        return finish_flatten_binder(binder, obj, out);  
    }  
      
    status_t flatten_binder(const sp<ProcessState>& proc,  
        const wp<IBinder>& binder, Parcel* out)  
    {  
        flat_binder_object obj;  
          
        obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  
        if (binder != NULL) {  
            sp<IBinder> real = binder.promote();  
            if (real != NULL) {  
                IBinder *local = real->localBinder();  
                if (!local) {  
                    BpBinder *proxy = real->remoteBinder();  
                    if (proxy == NULL) {  
                        LOGE("null proxy");  
                    }  
                    const int32_t handle = proxy ? proxy->handle() : 0;  
                    obj.type = BINDER_TYPE_WEAK_HANDLE;  
                    obj.handle = handle;  
                    obj.cookie = NULL;  
                } else {  
                    obj.type = BINDER_TYPE_WEAK_BINDER;  
                    obj.binder = binder.get_refs();  
                    obj.cookie = binder.unsafe_get();  
                }  
                return finish_flatten_binder(real, obj, out);  
            }  
              
            // XXX How to deal?  In order to flatten the given binder,  
            // we need to probe it for information, which requires a primary  
            // reference...  but we don't have one.  
            //  
            // The OpenBinder implementation uses a dynamic_cast<> here,  
            // but we can't do that with the different reference counting  
            // implementation we are using.  
            LOGE("Unable to unflatten Binder weak reference!");  
            obj.type = BINDER_TYPE_BINDER;  
            obj.binder = NULL;  
            obj.cookie = NULL;  
            return finish_flatten_binder(NULL, obj, out);  
          
        } else {  
            obj.type = BINDER_TYPE_BINDER;  
            obj.binder = NULL;  
            obj.cookie = NULL;  
            return finish_flatten_binder(NULL, obj, out);  
        }  
    }  
      
    inline static status_t finish_unflatten_binder(  
        BpBinder* proxy, const flat_binder_object& flat, const Parcel& in)  
    {  
        return NO_ERROR;  
    }  
          
    status_t unflatten_binder(const sp<ProcessState>& proc,  
        const Parcel& in, sp<IBinder>* out)  
    {  
        const flat_binder_object* flat = in.readObject(false);  
          
        if (flat) {  
            switch (flat->type) {  
                case BINDER_TYPE_BINDER:  
                    *out = static_cast<IBinder*>(flat->cookie);  
                    return finish_unflatten_binder(NULL, *flat, in);  
                case BINDER_TYPE_HANDLE:  
                    *out = proc->getStrongProxyForHandle(flat->handle);  
                    return finish_unflatten_binder(  
                        static_cast<BpBinder*>(out->get()), *flat, in);  
            }          
        }  
        return BAD_TYPE;  
    }  
      
    status_t unflatten_binder(const sp<ProcessState>& proc,  
        const Parcel& in, wp<IBinder>* out)  
    {  
        const flat_binder_object* flat = in.readObject(false);  
          
        if (flat) {  
            switch (flat->type) {  
                case BINDER_TYPE_BINDER:  
                    *out = static_cast<IBinder*>(flat->cookie);  
                    return finish_unflatten_binder(NULL, *flat, in);  
                case BINDER_TYPE_WEAK_BINDER:  
                    if (flat->binder != NULL) {  
                        out->set_object_and_refs(  
                            static_cast<IBinder*>(flat->cookie),  
                            static_cast<RefBase::weakref_type*>(flat->binder));  
                    } else {  
                        *out = NULL;  
                    }  
                    return finish_unflatten_binder(NULL, *flat, in);  
                case BINDER_TYPE_HANDLE:  
                case BINDER_TYPE_WEAK_HANDLE:  
                    *out = proc->getWeakProxyForHandle(flat->handle);  
                    return finish_unflatten_binder(  
                        static_cast<BpBinder*>(out->unsafe_get()), *flat, in);  
            }  
        }  
        return BAD_TYPE;  
    }  
      
    // ---------------------------------------------------------------------------  
      
    Parcel::Parcel()  
    {  
        initState();  
    }  
      
    Parcel::~Parcel()  
    {  
        freeDataNoInit();  
    }  
      
    const uint8_t* Parcel::data() const  
    {  
        return mData;  
    }  
      
    size_t Parcel::dataSize() const  
    {  
        return (mDataSize > mDataPos ? mDataSize : mDataPos);  
    }  
      
    size_t Parcel::dataAvail() const  
    {  
        // TODO: decide what to do about the possibility that this can  
        // report an available-data size that exceeds a Java int's max  
        // positive value, causing havoc.  Fortunately this will only  
        // happen if someone constructs a Parcel containing more than two  
        // gigabytes of data, which on typical phone hardware is simply  
        // not possible.  
        return dataSize() - dataPosition();  
    }  
      
    size_t Parcel::dataPosition() const  
    {  
        return mDataPos;  
    }  
      
    size_t Parcel::dataCapacity() const  
    {  
        return mDataCapacity;  
    }  
      
    status_t Parcel::setDataSize(size_t size)  
    {  
        status_t err;  
        err = continueWrite(size);  
        if (err == NO_ERROR) {  
            mDataSize = size;  
            LOGV("setDataSize Setting data size of %p to %d/n", this, mDataSize);  
        }  
        return err;  
    }  
      
    void Parcel::setDataPosition(size_t pos) const  
    {  
        mDataPos = pos;  
        mNextObjectHint = 0;  
    }  
      
    status_t Parcel::setDataCapacity(size_t size)  
    {  
        if (size > mDataSize) return continueWrite(size);  
        return NO_ERROR;  
    }  
      
    status_t Parcel::setData(const uint8_t* buffer, size_t len)  
    {  
        status_t err = restartWrite(len);  
        if (err == NO_ERROR) {  
            memcpy(const_cast<uint8_t*>(data()), buffer, len);  
            mDataSize = len;  
            mFdsKnown = false;  
        }  
        return err;  
    }  
      
    status_t Parcel::appendFrom(Parcel *parcel, size_t offset, size_t len)  
    {  
        const sp<ProcessState> proc(ProcessState::self());  
        status_t err;  
        uint8_t *data = parcel->mData;  
        size_t *objects = parcel->mObjects;  
        size_t size = parcel->mObjectsSize;  
        int startPos = mDataPos;  
        int firstIndex = -1, lastIndex = -2;  
      
        if (len == 0) {  
            return NO_ERROR;  
        }  
      
        // range checks against the source parcel size  
        if ((offset > parcel->mDataSize)  
                || (len > parcel->mDataSize)  
                || (offset + len > parcel->mDataSize)) {  
            return BAD_VALUE;  
        }  
      
        // Count objects in range  
        for (int i = 0; i < (int) size; i++) {  
            size_t off = objects[i];  
            if ((off >= offset) && (off < offset + len)) {  
                if (firstIndex == -1) {  
                    firstIndex = i;  
                }  
                lastIndex = i;  
            }  
        }  
        int numObjects = lastIndex - firstIndex + 1;  
      
        // grow data  
        err = growData(len);  
        if (err != NO_ERROR) {  
            return err;  
        }  
      
        // append data  
        memcpy(mData + mDataPos, data + offset, len);  
        mDataPos += len;  
        mDataSize += len;  
      
        if (numObjects > 0) {  
            // grow objects  
            if (mObjectsCapacity < mObjectsSize + numObjects) {  
                int newSize = ((mObjectsSize + numObjects)*3)/2;  
                size_t *objects =  
                    (size_t*)realloc(mObjects, newSize*sizeof(size_t));  
                if (objects == (size_t*)0) {  
                    return NO_MEMORY;  
                }  
                mObjects = objects;  
                mObjectsCapacity = newSize;  
            }  
              
            // append and acquire objects  
            int idx = mObjectsSize;  
            for (int i = firstIndex; i <= lastIndex; i++) {  
                size_t off = objects[i] - offset + startPos;  
                mObjects[idx++] = off;  
                mObjectsSize++;  
      
                flat_binder_object* flat  
                    = reinterpret_cast<flat_binder_object*>(mData + off);  
                acquire_object(proc, *flat, this);  
      
                if (flat->type == BINDER_TYPE_FD) {  
                    // If this is a file descriptor, we need to dup it so the  
                    // new Parcel now owns its own fd, and can declare that we  
                    // officially know we have fds.  
                    flat->handle = dup(flat->handle);  
                    flat->cookie = (void*)1;  
                    mHasFds = mFdsKnown = true;  
                }  
            }  
        }  
      
        return NO_ERROR;  
    }  
      
    bool Parcel::hasFileDescriptors() const  
    {  
        if (!mFdsKnown) {  
            scanForFds();  
        }  
        return mHasFds;  
    }  
      
    status_t Parcel::writeInterfaceToken(const String16& interface)  
    {  
        // currently the interface identification token is just its name as a string  
        return writeString16(interface);  
    }  
      
    bool Parcel::checkInterface(IBinder* binder) const  
    {  
        return enforceInterface(binder->getInterfaceDescriptor());   
    }  
      
    bool Parcel::enforceInterface(const String16& interface) const  
    {  
        const String16 str(readString16());  
        if (str == interface) {  
            return true;  
        } else {  
            LOGW("**** enforceInterface() expected '%s' but read '%s'/n",  
                    String8(interface).string(), String8(str).string());  
            return false;  
        }  
    }   
      
    const size_t* Parcel::objects() const  
    {  
        return mObjects;  
    }  
      
    size_t Parcel::objectsCount() const  
    {  
        return mObjectsSize;  
    }  
      
    status_t Parcel::errorCheck() const  
    {  
        return mError;  
    }  
      
    void Parcel::setError(status_t err)  
    {  
        mError = err;  
    }  
      
    status_t Parcel::finishWrite(size_t len)  
    {  
        //printf("Finish write of %d/n", len);  
        mDataPos += len;  
        LOGV("finishWrite Setting data pos of %p to %d/n", this, mDataPos);  
        if (mDataPos > mDataSize) {  
            mDataSize = mDataPos;  
            LOGV("finishWrite Setting data size of %p to %d/n", this, mDataSize);  
        }  
        //printf("New pos=%d, size=%d/n", mDataPos, mDataSize);  
        return NO_ERROR;  
    }  
      
    status_t Parcel::writeUnpadded(const void* data, size_t len)  
    {  
        size_t end = mDataPos + len;  
        if (end < mDataPos) {  
            // integer overflow  
            return BAD_VALUE;  
        }  
      
        if (end <= mDataCapacity) {  
    restart_write:  
            memcpy(mData+mDataPos, data, len);  
            return finishWrite(len);  
        }  
      
        status_t err = growData(len);  
        if (err == NO_ERROR) goto restart_write;  
        return err;  
    }  
      
    status_t Parcel::write(const void* data, size_t len)  
    {  
        void* const d = writeInplace(len);  
        if (d) {  
            memcpy(d, data, len);  
            return NO_ERROR;  
        }  
        return mError;  
    }  
      
    void* Parcel::writeInplace(size_t len)  
    {  
        const size_t padded = PAD_SIZE(len);  
      
        // sanity check for integer overflow  
        if (mDataPos+padded < mDataPos) {  
            return NULL;  
        }  
      
        if ((mDataPos+padded) <= mDataCapacity) {  
    restart_write:  
            //printf("Writing %ld bytes, padded to %ld/n", len, padded);  
            uint8_t* const data = mData+mDataPos;  
      
            // Need to pad at end?  
            if (padded != len) {  
    #if BYTE_ORDER == BIG_ENDIAN  
                static const uint32_t mask[4] = {  
                    0x00000000, 0xffffff00, 0xffff0000, 0xff000000  
                };  
    #endif  
    #if BYTE_ORDER == LITTLE_ENDIAN  
                static const uint32_t mask[4] = {  
                    0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff  
                };  
    #endif  
                //printf("Applying pad mask: %p to %p/n", (void*)mask[padded-len],  
                //    *reinterpret_cast<void**>(data+padded-4));  
                *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];  
            }  
      
            finishWrite(padded);  
            return data;  
        }  
      
        status_t err = growData(padded);  
        if (err == NO_ERROR) goto restart_write;  
        return NULL;  
    }  
      
    status_t Parcel::writeInt32(int32_t val)  
    {  
        return writeAligned(val);  
    }  
      
    status_t Parcel::writeInt64(int64_t val)  
    {  
        return writeAligned(val);  
    }  
      
    status_t Parcel::writeFloat(float val)  
    {  
        return writeAligned(val);  
    }  
      
    status_t Parcel::writeDouble(double val)  
    {  
        return writeAligned(val);  
    }  
      
    status_t Parcel::writeIntPtr(intptr_t val)  
    {  
        return writeAligned(val);  
    }  
      
    status_t Parcel::writeCString(const char* str)  
    {  
        return write(str, strlen(str)+1);  
    }  
      
    status_t Parcel::writeString8(const String8& str)  
    {  
        status_t err = writeInt32(str.bytes());  
        if (err == NO_ERROR) {  
            err = write(str.string(), str.bytes()+1);  
        }  
        return err;  
    }  
      
    status_t Parcel::writeString16(const String16& str)  
    {  
        return writeString16(str.string(), str.size());  
    }  
      
    status_t Parcel::writeString16(const char16_t* str, size_t len)  
    {  
        if (str == NULL) return writeInt32(-1);  
          
        status_t err = writeInt32(len);  
        if (err == NO_ERROR) {  
            len *= sizeof(char16_t);  
            uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));  
            if (data) {  
                memcpy(data, str, len);  
                *reinterpret_cast<char16_t*>(data+len) = 0;  
                return NO_ERROR;  
            }  
            err = mError;  
        }  
        return err;  
    }  
      
    status_t Parcel::writeStrongBinder(const sp<IBinder>& val)  
    {  
        return flatten_binder(ProcessState::self(), val, this);  
    }  
      
    status_t Parcel::writeWeakBinder(const wp<IBinder>& val)  
    {  
        return flatten_binder(ProcessState::self(), val, this);  
    }  
      
    status_t Parcel::writeNativeHandle(const native_handle* handle)  
    {  
        if (!handle || handle->version != sizeof(native_handle))  
            return BAD_TYPE;  
      
        status_t err;  
        err = writeInt32(handle->numFds);  
        if (err != NO_ERROR) return err;  
      
        err = writeInt32(handle->numInts);  
        if (err != NO_ERROR) return err;  
      
        for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)  
            err = writeDupFileDescriptor(handle->data[i]);  
      
        if (err != NO_ERROR) {  
            LOGD("write native handle, write dup fd failed");  
            return err;  
        }  
        err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);  
        return err;  
    }  
      
    status_t Parcel::writeFileDescriptor(int fd)  
    {  
        flat_binder_object obj;  
        obj.type = BINDER_TYPE_FD;  
        obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  
        obj.handle = fd;  
        obj.cookie = (void*)0;  
        return writeObject(obj, true);  
    }  
      
    status_t Parcel::writeDupFileDescriptor(int fd)  
    {  
        flat_binder_object obj;  
        obj.type = BINDER_TYPE_FD;  
        obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  
        obj.handle = dup(fd);  
        obj.cookie = (void*)1;  
        return writeObject(obj, true);  
    }  
      
    status_t Parcel::write(const Flattenable& val)  
    {  
        status_t err;  
      
        // size if needed  
        size_t len = val.getFlattenedSize();  
        size_t fd_count = val.getFdCount();  
      
        err = this->writeInt32(len);  
        if (err) return err;  
      
        err = this->writeInt32(fd_count);  
        if (err) return err;  
      
        // payload  
        void* buf = this->writeInplace(PAD_SIZE(len));  
        if (buf == NULL)  
            return BAD_VALUE;  
      
        int* fds = NULL;  
        if (fd_count) {  
            fds = new int[fd_count];  
        }  
      
        err = val.flatten(buf, len, fds, fd_count);  
        for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {  
            err = this->writeDupFileDescriptor( fds[i] );  
        }  
      
        if (fd_count) {  
            delete [] fds;  
        }  
      
        return err;  
    }  
      
    status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)  
    {  
        const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;  
        const bool enoughObjects = mObjectsSize < mObjectsCapacity;  
        if (enoughData && enoughObjects) {  
    restart_write:  
            *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;  
              
            // Need to write meta-data?  
            if (nullMetaData || val.binder != NULL) {  
                mObjects[mObjectsSize] = mDataPos;  
                acquire_object(ProcessState::self(), val, this);  
                mObjectsSize++;  
            }  
              
            // remember if it's a file descriptor  
            if (val.type == BINDER_TYPE_FD) {  
                mHasFds = mFdsKnown = true;  
            }  
      
            return finishWrite(sizeof(flat_binder_object));  
        }  
      
        if (!enoughData) {  
            const status_t err = growData(sizeof(val));  
            if (err != NO_ERROR) return err;  
        }  
        if (!enoughObjects) {  
            size_t newSize = ((mObjectsSize+2)*3)/2;  
            size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t));  
            if (objects == NULL) return NO_MEMORY;  
            mObjects = objects;  
            mObjectsCapacity = newSize;  
        }  
          
        goto restart_write;  
    }  
      
    void Parcel::remove(size_t start, size_t amt)  
    {  
        LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");  
    }  
      
    status_t Parcel::read(void* outData, size_t len) const  
    {  
        if ((mDataPos+PAD_SIZE(len)) >= mDataPos && (mDataPos+PAD_SIZE(len)) <= mDataSize) {  
            memcpy(outData, mData+mDataPos, len);  
            mDataPos += PAD_SIZE(len);  
            LOGV("read Setting data pos of %p to %d/n", this, mDataPos);  
            return NO_ERROR;  
        }  
        return NOT_ENOUGH_DATA;  
    }  
      
    const void* Parcel::readInplace(size_t len) const  
    {  
        if ((mDataPos+PAD_SIZE(len)) >= mDataPos && (mDataPos+PAD_SIZE(len)) <= mDataSize) {  
            const void* data = mData+mDataPos;  
            mDataPos += PAD_SIZE(len);  
            LOGV("readInplace Setting data pos of %p to %d/n", this, mDataPos);  
            return data;  
        }  
        return NULL;  
    }  
      
    template<class T>  
    status_t Parcel::readAligned(T *pArg) const {  
        COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T));  
      
        if ((mDataPos+sizeof(T)) <= mDataSize) {  
            const void* data = mData+mDataPos;  
            mDataPos += sizeof(T);  
            *pArg =  *reinterpret_cast<const T*>(data);  
            return NO_ERROR;  
        } else {  
            return NOT_ENOUGH_DATA;  
        }  
    }  
      
    template<class T>  
    T Parcel::readAligned() const {  
        T result;  
        if (readAligned(&result) != NO_ERROR) {  
            result = 0;  
        }  
      
        return result;  
    }  
      
    template<class T>  
    status_t Parcel::writeAligned(T val) {  
        COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T));  
      
        if ((mDataPos+sizeof(val)) <= mDataCapacity) {  
    restart_write:  
            *reinterpret_cast<T*>(mData+mDataPos) = val;  
            return finishWrite(sizeof(val));  
        }  
      
        status_t err = growData(sizeof(val));  
        if (err == NO_ERROR) goto restart_write;  
        return err;  
    }  
      
    status_t Parcel::readInt32(int32_t *pArg) const  
    {  
        return readAligned(pArg);  
    }  
      
    int32_t Parcel::readInt32() const  
    {  
        return readAligned<int32_t>();  
    }  
      
      
    status_t Parcel::readInt64(int64_t *pArg) const  
    {  
        return readAligned(pArg);  
    }  
      
      
    int64_t Parcel::readInt64() const  
    {  
        return readAligned<int64_t>();  
    }  
      
    status_t Parcel::readFloat(float *pArg) const  
    {  
        return readAligned(pArg);  
    }  
      
      
    float Parcel::readFloat() const  
    {  
        return readAligned<float>();  
    }  
      
    status_t Parcel::readDouble(double *pArg) const  
    {  
        return readAligned(pArg);  
    }  
      
      
    double Parcel::readDouble() const  
    {  
        return readAligned<double>();  
    }  
      
    status_t Parcel::readIntPtr(intptr_t *pArg) const  
    {  
        return readAligned(pArg);  
    }  
      
      
    intptr_t Parcel::readIntPtr() const  
    {  
        return readAligned<intptr_t>();  
    }  
      
      
    const char* Parcel::readCString() const  
    {  
        const size_t avail = mDataSize-mDataPos;  
        if (avail > 0) {  
            const char* str = reinterpret_cast<const char*>(mData+mDataPos);  
            // is the string's trailing NUL within the parcel's valid bounds?  
            const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));  
            if (eos) {  
                const size_t len = eos - str;  
                mDataPos += PAD_SIZE(len+1);  
                LOGV("readCString Setting data pos of %p to %d/n", this, mDataPos);  
                return str;  
            }  
        }  
        return NULL;  
    }  
      
    String8 Parcel::readString8() const  
    {  
        int32_t size = readInt32();  
        // watch for potential int overflow adding 1 for trailing NUL  
        if (size > 0 && size < INT32_MAX) {  
            const char* str = (const char*)readInplace(size+1);  
            if (str) return String8(str, size);  
        }  
        return String8();  
    }  
      
    String16 Parcel::readString16() const  
    {  
        size_t len;  
        const char16_t* str = readString16Inplace(&len);  
        if (str) return String16(str, len);  
        LOGE("Reading a NULL string not supported here.");  
        return String16();  
    }  
      
    const char16_t* Parcel::readString16Inplace(size_t* outLen) const  
    {  
        int32_t size = readInt32();  
        // watch for potential int overflow from size+1  
        if (size >= 0 && size < INT32_MAX) {  
            *outLen = size;  
            const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));  
            if (str != NULL) {  
                return str;  
            }  
        }  
        *outLen = 0;  
        return NULL;  
    }  
      
    sp<IBinder> Parcel::readStrongBinder() const  
    {  
        sp<IBinder> val;  
        unflatten_binder(ProcessState::self(), *this, &val);  
        return val;  
    }  
      
    wp<IBinder> Parcel::readWeakBinder() const  
    {  
        wp<IBinder> val;  
        unflatten_binder(ProcessState::self(), *this, &val);  
        return val;  
    }  
      
      
    native_handle* Parcel::readNativeHandle() const  
    {  
        int numFds, numInts;  
        status_t err;  
        err = readInt32(&numFds);  
        if (err != NO_ERROR) return 0;  
        err = readInt32(&numInts);  
        if (err != NO_ERROR) return 0;  
      
        native_handle* h = native_handle_create(numFds, numInts);  
        for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {  
            h->data[i] = dup(readFileDescriptor());  
            if (h->data[i] < 0) err = BAD_VALUE;  
        }  
        err = read(h->data + numFds, sizeof(int)*numInts);  
        if (err != NO_ERROR) {  
            native_handle_close(h);  
            native_handle_delete(h);  
            h = 0;  
        }  
        return h;  
    }  
      
      
    int Parcel::readFileDescriptor() const  
    {  
        const flat_binder_object* flat = readObject(true);  
        if (flat) {  
            switch (flat->type) {  
                case BINDER_TYPE_FD:  
                    //LOGI("Returning file descriptor %ld from parcel %p/n", flat->handle, this);  
                    return flat->handle;  
            }          
        }  
        return BAD_TYPE;  
    }  
      
    status_t Parcel::read(Flattenable& val) const  
    {  
        // size  
        const size_t len = this->readInt32();  
        const size_t fd_count = this->readInt32();  
      
        // payload  
        void const* buf = this->readInplace(PAD_SIZE(len));  
        if (buf == NULL)  
            return BAD_VALUE;  
      
        int* fds = NULL;  
        if (fd_count) {  
            fds = new int[fd_count];  
        }  
      
        status_t err = NO_ERROR;  
        for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {  
            fds[i] = dup(this->readFileDescriptor());  
            if (fds[i] < 0) err = BAD_VALUE;  
        }  
      
        if (err == NO_ERROR) {  
            err = val.unflatten(buf, len, fds, fd_count);  
        }  
      
        if (fd_count) {  
            delete [] fds;  
        }  
      
        return err;  
    }  
    const flat_binder_object* Parcel::readObject(bool nullMetaData) const  
    {  
        const size_t DPOS = mDataPos;  
        if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {  
            const flat_binder_object* obj  
                    = reinterpret_cast<const flat_binder_object*>(mData+DPOS);  
            mDataPos = DPOS + sizeof(flat_binder_object);  
            if (!nullMetaData && (obj->cookie == NULL && obj->binder == NULL)) {  
                // When transferring a NULL object, we don't write it into  
                // the object list, so we don't want to check for it when  
                // reading.  
                LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos);  
                return obj;  
            }  
              
            // Ensure that this object is valid...  
            size_t* const OBJS = mObjects;  
            const size_t N = mObjectsSize;  
            size_t opos = mNextObjectHint;  
              
            if (N > 0) {  
                LOGV("Parcel %p looking for obj at %d, hint=%d/n",  
                     this, DPOS, opos);  
                  
                // Start at the current hint position, looking for an object at  
                // the current data position.  
                if (opos < N) {  
                    while (opos < (N-1) && OBJS[opos] < DPOS) {  
                        opos++;  
                    }  
                } else {  
                    opos = N-1;  
                }  
                if (OBJS[opos] == DPOS) {  
                    // Found it!  
                    LOGV("Parcel found obj %d at index %d with forward search",  
                         this, DPOS, opos);  
                    mNextObjectHint = opos+1;  
                    LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos);  
                    return obj;  
                }  
              
                // Look backwards for it...  
                while (opos > 0 && OBJS[opos] > DPOS) {  
                    opos--;  
                }  
                if (OBJS[opos] == DPOS) {  
                    // Found it!  
                    LOGV("Parcel found obj %d at index %d with backward search",  
                         this, DPOS, opos);  
                    mNextObjectHint = opos+1;  
                    LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos);  
                    return obj;  
                }  
            }  
            LOGW("Attempt to read object from Parcel %p at offset %d that is not in the object list",  
                 this, DPOS);  
        }  
        return NULL;  
    }  
      
    void Parcel::closeFileDescriptors()  
    {  
        size_t i = mObjectsSize;  
        if (i > 0) {  
            //LOGI("Closing file descriptors for %d objects...", mObjectsSize);  
        }  
        while (i > 0) {  
            i--;  
            const flat_binder_object* flat  
                = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);  
            if (flat->type == BINDER_TYPE_FD) {  
                //LOGI("Closing fd: %ld/n", flat->handle);  
                close(flat->handle);  
            }  
        }  
    }  
      
    const uint8_t* Parcel::ipcData() const  
    {  
        return mData;  
    }  
      
    size_t Parcel::ipcDataSize() const  
    {  
        return (mDataSize > mDataPos ? mDataSize : mDataPos);  
    }  
      
    const size_t* Parcel::ipcObjects() const  
    {  
        return mObjects;  
    }  
      
    size_t Parcel::ipcObjectsCount() const  
    {  
        return mObjectsSize;  
    }  
      
    void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,  
        const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)  
    {  
        freeDataNoInit();  
        mError = NO_ERROR;  
        mData = const_cast<uint8_t*>(data);  
        mDataSize = mDataCapacity = dataSize;  
        //LOGI("setDataReference Setting data size of %p to %lu (pid=%d)/n", this, mDataSize, getpid());  
        mDataPos = 0;  
        LOGV("setDataReference Setting data pos of %p to %d/n", this, mDataPos);  
        mObjects = const_cast<size_t*>(objects);  
        mObjectsSize = mObjectsCapacity = objectsCount;  
        mNextObjectHint = 0;  
        mOwner = relFunc;  
        mOwnerCookie = relCookie;  
        scanForFds();  
    }  
      
    void Parcel::print(TextOutput& to, uint32_t flags) const  
    {  
        to << "Parcel(";  
          
        if (errorCheck() != NO_ERROR) {  
            const status_t err = errorCheck();  
            to << "Error: " << (void*)err << " /"" << strerror(-err) << "/"";  
        } else if (dataSize() > 0) {  
            const uint8_t* DATA = data();  
            to << indent << HexDump(DATA, dataSize()) << dedent;  
            const size_t* OBJS = objects();  
            const size_t N = objectsCount();  
            for (size_t i=0; i<N; i++) {  
                const flat_binder_object* flat  
                    = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);  
                to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "  
                    << TypeCode(flat->type & 0x7f7f7f00)  
                    << " = " << flat->binder;  
            }  
        } else {  
            to << "NULL";  
        }  
          
        to << ")";  
    }  
      
    void Parcel::releaseObjects()  
    {  
        const sp<ProcessState> proc(ProcessState::self());  
        size_t i = mObjectsSize;  
        uint8_t* const data = mData;  
        size_t* const objects = mObjects;  
        while (i > 0) {  
            i--;  
            const flat_binder_object* flat  
                = reinterpret_cast<flat_binder_object*>(data+objects[i]);  
            release_object(proc, *flat, this);  
        }  
    }  
      
    void Parcel::acquireObjects()  
    {  
        const sp<ProcessState> proc(ProcessState::self());  
        size_t i = mObjectsSize;  
        uint8_t* const data = mData;  
        size_t* const objects = mObjects;  
        while (i > 0) {  
            i--;  
            const flat_binder_object* flat  
                = reinterpret_cast<flat_binder_object*>(data+objects[i]);  
            acquire_object(proc, *flat, this);  
        }  
    }  
      
    void Parcel::freeData()  
    {  
        freeDataNoInit();  
        initState();  
    }  
      
    void Parcel::freeDataNoInit()  
    {  
        if (mOwner) {  
            //LOGI("Freeing data ref of %p (pid=%d)/n", this, getpid());  
            mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);  
        } else {  
            releaseObjects();  
            if (mData) free(mData);  
            if (mObjects) free(mObjects);  
        }  
    }  
      
    status_t Parcel::growData(size_t len)  
    {  
        size_t newSize = ((mDataSize+len)*3)/2;  
        return (newSize <= mDataSize)  
                ? (status_t) NO_MEMORY  
                : continueWrite(newSize);  
    }  
      
    status_t Parcel::restartWrite(size_t desired)  
    {  
        if (mOwner) {  
            freeData();  
            return continueWrite(desired);  
        }  
          
        uint8_t* data = (uint8_t*)realloc(mData, desired);  
        if (!data && desired > mDataCapacity) {  
            mError = NO_MEMORY;  
            return NO_MEMORY;  
        }  
          
        releaseObjects();  
          
        if (data) {  
            mData = data;  
            mDataCapacity = desired;  
        }  
          
        mDataSize = mDataPos = 0;  
        LOGV("restartWrite Setting data size of %p to %d/n", this, mDataSize);  
        LOGV("restartWrite Setting data pos of %p to %d/n", this, mDataPos);  
              
        free(mObjects);  
        mObjects = NULL;  
        mObjectsSize = mObjectsCapacity = 0;  
        mNextObjectHint = 0;  
        mHasFds = false;  
        mFdsKnown = true;  
          
        return NO_ERROR;  
    }  
      
    status_t Parcel::continueWrite(size_t desired)  
    {  
        // If shrinking, first adjust for any objects that appear  
        // after the new data size.  
        size_t objectsSize = mObjectsSize;  
        if (desired < mDataSize) {  
            if (desired == 0) {  
                objectsSize = 0;  
            } else {  
                while (objectsSize > 0) {  
                    if (mObjects[objectsSize-1] < desired)  
                        break;  
                    objectsSize--;  
                }  
            }  
        }  
          
        if (mOwner) {  
            // If the size is going to zero, just release the owner's data.  
            if (desired == 0) {  
                freeData();  
                return NO_ERROR;  
            }  
      
            // If there is a different owner, we need to take  
            // posession.  
            uint8_t* data = (uint8_t*)malloc(desired);  
            if (!data) {  
                mError = NO_MEMORY;  
                return NO_MEMORY;  
            }  
            size_t* objects = NULL;  
              
            if (objectsSize) {  
                objects = (size_t*)malloc(objectsSize*sizeof(size_t));  
                if (!objects) {  
                    mError = NO_MEMORY;  
                    return NO_MEMORY;  
                }  
      
                // Little hack to only acquire references on objects  
                // we will be keeping.  
                size_t oldObjectsSize = mObjectsSize;  
                mObjectsSize = objectsSize;  
                acquireObjects();  
                mObjectsSize = oldObjectsSize;  
            }  
              
            if (mData) {  
                memcpy(data, mData, mDataSize < desired ? mDataSize : desired);  
            }  
            if (objects && mObjects) {  
                memcpy(objects, mObjects, objectsSize*sizeof(size_t));  
            }  
            //LOGI("Freeing data ref of %p (pid=%d)/n", this, getpid());  
            mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);  
            mOwner = NULL;  
      
            mData = data;  
            mObjects = objects;  
            mDataSize = (mDataSize < desired) ? mDataSize : desired;  
            LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize);  
            mDataCapacity = desired;  
            mObjectsSize = mObjectsCapacity = objectsSize;  
            mNextObjectHint = 0;  
      
        } else if (mData) {  
            if (objectsSize < mObjectsSize) {  
                // Need to release refs on any objects we are dropping.  
                const sp<ProcessState> proc(ProcessState::self());  
                for (size_t i=objectsSize; i<mObjectsSize; i++) {  
                    const flat_binder_object* flat  
                        = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);  
                    if (flat->type == BINDER_TYPE_FD) {  
                        // will need to rescan because we may have lopped off the only FDs  
                        mFdsKnown = false;  
                    }  
                    release_object(proc, *flat, this);  
                }  
                size_t* objects =  
                    (size_t*)realloc(mObjects, objectsSize*sizeof(size_t));  
                if (objects) {  
                    mObjects = objects;  
                }  
                mObjectsSize = objectsSize;  
                mNextObjectHint = 0;  
            }  
      
            // We own the data, so we can just do a realloc().  
            if (desired > mDataCapacity) {  
                uint8_t* data = (uint8_t*)realloc(mData, desired);  
                if (data) {  
                    mData = data;  
                    mDataCapacity = desired;  
                } else if (desired > mDataCapacity) {  
                    mError = NO_MEMORY;  
                    return NO_MEMORY;  
                }  
            } else {  
                mDataSize = desired;  
                LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize);  
                if (mDataPos > desired) {  
                    mDataPos = desired;  
                    LOGV("continueWrite Setting data pos of %p to %d/n", this, mDataPos);  
                }  
            }  
              
        } else {  
            // This is the first data.  Easy!  
            uint8_t* data = (uint8_t*)malloc(desired);  
            if (!data) {  
                mError = NO_MEMORY;  
                return NO_MEMORY;  
            }  
              
            if(!(mDataCapacity == 0 && mObjects == NULL  
                 && mObjectsCapacity == 0)) {  
                LOGE("continueWrite: %d/%p/%d/%d", mDataCapacity, mObjects, mObjectsCapacity, desired);  
            }  
              
            mData = data;  
            mDataSize = mDataPos = 0;  
            LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize);  
            LOGV("continueWrite Setting data pos of %p to %d/n", this, mDataPos);  
            mDataCapacity = desired;  
        }  
      
        return NO_ERROR;  
    }  
      
    void Parcel::initState()  
    {  
        mError = NO_ERROR;  
        mData = 0;  
        mDataSize = 0;  
        mDataCapacity = 0;  
        mDataPos = 0;  
        LOGV("initState Setting data size of %p to %d/n", this, mDataSize);  
        LOGV("initState Setting data pos of %p to %d/n", this, mDataPos);  
        mObjects = NULL;  
        mObjectsSize = 0;  
        mObjectsCapacity = 0;  
        mNextObjectHint = 0;  
        mHasFds = false;  
        mFdsKnown = true;  
        mOwner = NULL;  
    }  
      
    void Parcel::scanForFds() const  
    {  
        bool hasFds = false;  
        for (size_t i=0; i<mObjectsSize; i++) {  
            const flat_binder_object* flat  
                = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);  
            if (flat->type == BINDER_TYPE_FD) {  
                hasFds = true;  
                break;  
            }  
        }  
        mHasFds = hasFds;  
        mFdsKnown = true;  
    }  
      
    }; // namespace android  

    本文的源码使用的是Android 2.1版本。

  • 相关阅读:
    移动端rem布局
    父子组件通信
    拦截器
    Vue路由教程
    使用var和let的区别
    数组去重的几种方法
    利用位运算进行权限控制
    线程基础
    关于get请求的乱码问题
    nuxt.js Navigating to current location ("/xxx") is not allowed
  • 原文地址:https://www.cnblogs.com/roccheung/p/5797395.html
Copyright © 2011-2022 走看看