zoukankan      html  css  js  c++  java
  • 线代总结2 矩阵代数

    矩阵运算

     

    矩阵加法,标量乘法,矩阵乘法。

    A(BC)=(AB)C 矩阵乘法顺序无关

    AB=AC 不能推出 B = C 因为A可能不是列向量线性无关

     

    矩阵的逆

    这里讨论的是n*n的方阵,若矩阵可逆逆矩阵是唯一的,存在逆矩阵的矩阵又称为非奇异矩阵

    image

    怎样判断一个矩阵是否存在逆矩阵呢,即是否该矩阵是 非奇异矩阵呢?

    对于2*2的矩阵

    image

    detA != 0 则该矩阵是 非奇异矩阵, 注意对于 2*2 如果 detA=0 即ad=bc 则 c/a = d/b 假设 a!=0 b!=0 这意味这 A的列向量是线性相关的! –> 是否线性相关等价与是否非奇异 ?

    如果是线性相关的A必然不是满秩不能映射生成R^n,而存在可逆矩阵,意味着可以生成[1 0 … 0]  [0 1 … 0] … [0 0 … 1] 这就意味着可以生成R^n是矛盾的。

    image

     

    初等矩阵

    单位矩阵进行一次行变换得到就是初等矩阵

    image

    image  image image

    左乘对应行变换,右乘对应列变换。

    image

    n*n的矩阵A是可逆的,当且仅当A行等价与I_n,把A变为I_n的一些列初等变换同时把I_n变成A^-

    这对于逆矩阵的一种求解方法

    image

    这个思路和前面第一章那个矩阵映射中关于单位向量的观点是一致的。 这其实就是解方程转换成阶梯矩阵的过程,只不过进一步向上使得主元上面都是0。

    image

     

    可逆矩阵的特征

    image

     

    分块矩阵

    分块矩阵的乘法

    image

    image

    image

    矩阵的乘法AB=C 可以将C的列向量看做是B中的一列向量对于A中的列向量的操纵线性相加。

    也可以将C的行看做A中的一行向量对于B中行向量的操作线性相加。

    image image

    可以看出 AB=C  <=> B^TA^T=C^T 也说明了上面的性质。  A^T的列操纵B^T的列也即A的行操纵B的行。(横看成岭侧成峰)

    矩阵分解(LU分解)

    image  LU分解 适用于解一系列具有相同系数矩阵的线性方程。

    image

    Ax=b  L(Ux)=b Ly=b

    即解

    Ly=b

    Ux=y

    分解算法

    image image

    image

    为什么用LU分解解方程而不用 A^- b 求解?

    image

  • 相关阅读:
    南北朝
    霍去病
    晋 司马
    唐代 诗人
    Getting Started with Google Tango(Google Tango开始教程)
    第二届普适计算和信号处理及应用国际会议论文2016年 The 2nd Conference on Pervasive Computing, Signal Processing and Applications(PCSPA, 2016)
    TurtleBot教程
    ROS教程
    《SLAM for Dummies》中文版《SLAM初学者教程》
    Sensor fusion(传感器融合)
  • 原文地址:https://www.cnblogs.com/rocketfan/p/1951145.html
Copyright © 2011-2022 走看看