zoukankan      html  css  js  c++  java
  • tensorflow添加自定义的auc计算operator

    tensorflow可以很方便的添加用户自定义的operator(如果不添加也可以采用sklearnauc计算函数或者自己写一个 但是会在python执行,这里希望在graph中也就是c++端执行这个计算)

    这里根据工作需要添加一个计算aucoperator,只给出最简单实现,后续高级功能还是参考官方wiki

    https://www.tensorflow.org/versions/r0.7/how_tos/adding_an_op/index.html

    注意tensorflow现在和最初的官方wiki有变化,原wiki貌似是需要重新bazel编译整个tensorflow,然后使用比如tf.user_op.auc这样。

    目前wiki给出的方式>=0.6.0版本,采用plug-in的方式,更加灵活可以直接用g++编译一个so载入,解耦合,省去了编译tensorflow过程,即插即用。

       

    首先aucoperator计算的文件

       

    tensorflow/core/user_ops/auc.cc

       

    /* Copyright 2015 Google Inc. All Rights Reserved.

       

    Licensed under the Apache License, Version 2.0 (the "License");

    you may not use this file except in compliance with the License.

    You may obtain a copy of the License at

       

    http://www.apache.org/licenses/LICENSE-2.0

       

    Unless required by applicable law or agreed to in writing, software

    distributed under the License is distributed on an "AS IS" BASIS,

    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

    See the License for the specific language governing permissions and

    limitations under the License.

    ==============================================================================*/

       

    // An auc Op.

       

    #include "tensorflow/core/framework/op.h"

    #include "tensorflow/core/framework/op_kernel.h"

       

    using namespace tensorflow;

    using std::vector;

    //@TODO add weight as optional input

    REGISTER_OP("Auc")

    .Input("predicts: T1")

    .Input("labels: T2")

    .Output("z: float")

    .Attr("T1: {float, double}")

    .Attr("T2: {float, double}")

    //.Attr("T1: {float, double}")

    //.Attr("T2: {int32, int64}")

    .SetIsCommutative()

    .Doc(R"doc(

    Given preidicts and labels output it's auc

    )doc");

       

    class AucOp : public OpKernel {

    public:

    explicit AucOp(OpKernelConstruction* context) : OpKernel(context) {}

       

    template<typename ValueVec>

    void index_sort(const ValueVec& valueVec, vector<int>& indexVec)

    {

    indexVec.resize(valueVec.size());

    for (size_t i = 0; i < indexVec.size(); i++)

    {

    indexVec[i] = i;

    }

    std::sort(indexVec.begin(), indexVec.end(),

    [&valueVec](const int l, const int r) { return valueVec(l) > valueVec(r); });

    }

       

    void Compute(OpKernelContext* context) override {

    // Grab the input tensor

    const Tensor& predicts_tensor = context->input(0);

    const Tensor& labels_tensor = context->input(1);

    auto predicts = predicts_tensor.flat<float>(); //输入能接受float double那么这里如何都处理?

    auto labels = labels_tensor.flat<float>();

       

    vector<int> indexes;

    index_sort(predicts, indexes);

    typedef float Float;

       

    Float oldFalsePos = 0;

    Float oldTruePos = 0;

    Float falsePos = 0;

    Float truePos = 0;

    Float oldOut = std::numeric_limits<Float>::infinity();

    Float result = 0;

       

    for (size_t i = 0; i < indexes.size(); i++)

    {

    int index = indexes[i];

    Float label = labels(index);

    Float prediction = predicts(index);

    Float weight = 1.0;

    //Pval3(label, output, weight);

    if (prediction != oldOut) //存在相同值得情况是特殊处理的

    {

    result += 0.5 * (oldTruePos + truePos) * (falsePos - oldFalsePos);

    oldOut = prediction;

    oldFalsePos = falsePos;

    oldTruePos = truePos;

    }

    if (label > 0)

    truePos += weight;

    else

    falsePos += weight;

    }

    result += 0.5 * (oldTruePos + truePos) * (falsePos - oldFalsePos);

    Float AUC = result / (truePos * falsePos);

       

    // Create an output tensor

    Tensor* output_tensor = NULL;

    TensorShape output_shape;

       

    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor));

    output_tensor->scalar<float>()() = AUC;

    }

    };

       

    REGISTER_KERNEL_BUILDER(Name("Auc").Device(DEVICE_CPU), AucOp);

       

       

    编译:

    $cat gen-so.sh

       

    TF_INC=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())')

    TF_LIB=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_lib())')

    i=$1

    o=${i/.cc/.so}

    g++ -std=c++11 -shared $i -o $o -I $TF_INC -l tensorflow_framework -L $TF_LIB -fPIC -Wl,-rpath $TF_LIB

       

    $sh gen-so.sh auc.cc

    会生成auc.so

       

    使用的时候

    auc_module = tf.load_op_library('auc.so')

    #auc = tf.user_ops.auc #0.6.0之前的tensorflow 自定义op方式

    auc = auc_module.auc

       

    evaluate_op = auc(py_x, Y) #py_x is predicts, Y is labels

       

       

       

       

       

       

  • 相关阅读:
    错误解决记录-------------验证启动HDFS时遇到的错误
    Spark环境搭建(一)-----------HDFS分布式文件系统搭建
    Synergy简单使用小记
    python基础一 ------排序和查找算法
    Scrapy基础(十四)————Scrapy实现知乎模拟登陆
    Scrapy基础(十四)————知乎模拟登陆
    Scrapy基础(十三)————ItemLoader的简单使用
    Scrapy基础(十二)————异步导出Item数据到Mysql中
    简单python爬虫练习 E站本爬取
    7-4 jmu-Java&Python-统计文字中的单词数量并按出现次数排序 (25分)
  • 原文地址:https://www.cnblogs.com/rocketfan/p/5201593.html
Copyright © 2011-2022 走看看