zoukankan      html  css  js  c++  java
  • tensorflow添加自定义的auc计算operator

    tensorflow可以很方便的添加用户自定义的operator(如果不添加也可以采用sklearnauc计算函数或者自己写一个 但是会在python执行,这里希望在graph中也就是c++端执行这个计算)

    这里根据工作需要添加一个计算aucoperator,只给出最简单实现,后续高级功能还是参考官方wiki

    https://www.tensorflow.org/versions/r0.7/how_tos/adding_an_op/index.html

    注意tensorflow现在和最初的官方wiki有变化,原wiki貌似是需要重新bazel编译整个tensorflow,然后使用比如tf.user_op.auc这样。

    目前wiki给出的方式>=0.6.0版本,采用plug-in的方式,更加灵活可以直接用g++编译一个so载入,解耦合,省去了编译tensorflow过程,即插即用。

       

    首先aucoperator计算的文件

       

    tensorflow/core/user_ops/auc.cc

       

    /* Copyright 2015 Google Inc. All Rights Reserved.

       

    Licensed under the Apache License, Version 2.0 (the "License");

    you may not use this file except in compliance with the License.

    You may obtain a copy of the License at

       

    http://www.apache.org/licenses/LICENSE-2.0

       

    Unless required by applicable law or agreed to in writing, software

    distributed under the License is distributed on an "AS IS" BASIS,

    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

    See the License for the specific language governing permissions and

    limitations under the License.

    ==============================================================================*/

       

    // An auc Op.

       

    #include "tensorflow/core/framework/op.h"

    #include "tensorflow/core/framework/op_kernel.h"

       

    using namespace tensorflow;

    using std::vector;

    //@TODO add weight as optional input

    REGISTER_OP("Auc")

    .Input("predicts: T1")

    .Input("labels: T2")

    .Output("z: float")

    .Attr("T1: {float, double}")

    .Attr("T2: {float, double}")

    //.Attr("T1: {float, double}")

    //.Attr("T2: {int32, int64}")

    .SetIsCommutative()

    .Doc(R"doc(

    Given preidicts and labels output it's auc

    )doc");

       

    class AucOp : public OpKernel {

    public:

    explicit AucOp(OpKernelConstruction* context) : OpKernel(context) {}

       

    template<typename ValueVec>

    void index_sort(const ValueVec& valueVec, vector<int>& indexVec)

    {

    indexVec.resize(valueVec.size());

    for (size_t i = 0; i < indexVec.size(); i++)

    {

    indexVec[i] = i;

    }

    std::sort(indexVec.begin(), indexVec.end(),

    [&valueVec](const int l, const int r) { return valueVec(l) > valueVec(r); });

    }

       

    void Compute(OpKernelContext* context) override {

    // Grab the input tensor

    const Tensor& predicts_tensor = context->input(0);

    const Tensor& labels_tensor = context->input(1);

    auto predicts = predicts_tensor.flat<float>(); //输入能接受float double那么这里如何都处理?

    auto labels = labels_tensor.flat<float>();

       

    vector<int> indexes;

    index_sort(predicts, indexes);

    typedef float Float;

       

    Float oldFalsePos = 0;

    Float oldTruePos = 0;

    Float falsePos = 0;

    Float truePos = 0;

    Float oldOut = std::numeric_limits<Float>::infinity();

    Float result = 0;

       

    for (size_t i = 0; i < indexes.size(); i++)

    {

    int index = indexes[i];

    Float label = labels(index);

    Float prediction = predicts(index);

    Float weight = 1.0;

    //Pval3(label, output, weight);

    if (prediction != oldOut) //存在相同值得情况是特殊处理的

    {

    result += 0.5 * (oldTruePos + truePos) * (falsePos - oldFalsePos);

    oldOut = prediction;

    oldFalsePos = falsePos;

    oldTruePos = truePos;

    }

    if (label > 0)

    truePos += weight;

    else

    falsePos += weight;

    }

    result += 0.5 * (oldTruePos + truePos) * (falsePos - oldFalsePos);

    Float AUC = result / (truePos * falsePos);

       

    // Create an output tensor

    Tensor* output_tensor = NULL;

    TensorShape output_shape;

       

    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor));

    output_tensor->scalar<float>()() = AUC;

    }

    };

       

    REGISTER_KERNEL_BUILDER(Name("Auc").Device(DEVICE_CPU), AucOp);

       

       

    编译:

    $cat gen-so.sh

       

    TF_INC=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())')

    TF_LIB=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_lib())')

    i=$1

    o=${i/.cc/.so}

    g++ -std=c++11 -shared $i -o $o -I $TF_INC -l tensorflow_framework -L $TF_LIB -fPIC -Wl,-rpath $TF_LIB

       

    $sh gen-so.sh auc.cc

    会生成auc.so

       

    使用的时候

    auc_module = tf.load_op_library('auc.so')

    #auc = tf.user_ops.auc #0.6.0之前的tensorflow 自定义op方式

    auc = auc_module.auc

       

    evaluate_op = auc(py_x, Y) #py_x is predicts, Y is labels

       

       

       

       

       

       

  • 相关阅读:
    sql中的exists用法
    采用spring的schedule注解配置定时任务
    java通过传入的日期,获取所在周的周一至周日
    forever start app.js 启动node时,服务访问一次后第二次就不能访问了
    linux 安装nginx
    linux 常用命令
    8位字节表示的有符号数范围是-128~127
    极光推送免费版
    tomcat 设置连接数
    查看linux内存使用情况
  • 原文地址:https://www.cnblogs.com/rocketfan/p/5201593.html
Copyright © 2011-2022 走看看