举例单条数据:02-26 08:01:56 [qtp512249001-42] INFO async-statistics - class com.spring.aop.StorageManagerStatAspect${"method":"com.systoon.scloud.master.controller.ImageController.download","ip":"172.28.6.131","port":"38001","father":"sun.reflect.GeneratedMethodAccessor8.invoke/null/-1","requestIp":"106.39.33.246","argsMap":{"org.eclipse.jetty.server.Request:0":{"requestURI":"/f/KZ0wxxbvFz924VaHS8JN1Fk42jV9OBMCHYoLtuc9sAkfF.jpg"},"org.eclipse.jetty.server.Response:1":1462183982},"processTime":50,"time":1456444916225,"retValMap":{":":"this object is null"}}
是写出的一行日志。 日志结构是时间 + 打印的类 + JSON
那么现在是要进行一个统计 MR 分析。
那么开始上代码:
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.rocky.util.TimeUtils;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.MultipleOutputFormat;
import org.apache.hadoop.util.Progressable;
import java.io.IOException;
import java.net.URI;
import java.util.Iterator;
public class MulOutput {
public static final String clazz = "com.spring.aop.StorageManagerStatAspect";
public static final String m_download = "com.systoon.scloud.master.controller.ImageController.download";
public static final String m_upload = "com.systoon.scloud.master.controller.DirectUploadFile.directUploadFile";
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
Text word = new Text();
@Override
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
if(line.contains(clazz)){
if(line.contains(m_download)){
String tempObject = line.split(clazz)[1];
String tmp = tempObject.substring(1,tempObject.length());
JSONObject jsonObject = JSON.parseObject(tmp);
String method = jsonObject.get("method").toString();
if( method.equals(m_download) ){
word.set("download");
output.collect(word, one);
}
} else if(line.contains(m_upload)) {
String tempObject = line.split(clazz)[1];
String tmp = tempObject.substring(1,tempObject.length());
JSONObject jsonObject = JSON.parseObject(tmp);
String method = jsonObject.get("method").toString();
if( method.equals(m_upload) ){
word.set("upload");
output.collect(word, one);
}
} else {
word.set("debug");
output.collect(word,one);
}
} else {
word.set("others");
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException{
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception{
JobConf jobConf = new JobConf(MulOutput.class);
jobConf.setJobName("rocky_test");
String outPath = "/test/mapReduce/statis"+TimeUtils.getStringDate();
final FileSystem filesystem = FileSystem.get(new URI(outPath), jobConf);
if(filesystem.exists(new Path(outPath))){
filesystem.delete(new Path(outPath), true);
}
jobConf.setMapperClass(Map.class); //为job设置Mapper类
jobConf.setMapOutputKeyClass(Text.class); //输出数据设置Key类
jobConf.setMapOutputValueClass(IntWritable.class); //输出数据设置Key类
jobConf.setCombinerClass(Reduce.class); // 为job设置Combiner类
jobConf.setReducerClass(Reduce.class); // 为job设置Reduce类
jobConf.setOutputKeyClass(Text.class); // 输出数据设置Key类
jobConf.setOutputValueClass(IntWritable.class); // 输出数据设置Key类
FileInputFormat.setInputPaths(jobConf, new Path("/test/mapReduce/statistics.log.2016-02-26"));
// // 扫描组合path
// FileInputFormat.addInputPath();
jobConf.setOutputFormat(MyMultipleFilesTextOutputFormat.class);
FileOutputFormat.setOutputPath(jobConf, new Path(outPath));
JobClient.runJob(jobConf); //运行一个job
}
}
简单来讲就是 Map 按行读, Reduce 进行汇总。 也是统计中最最常用的。 轻松解决问题。