zoukankan      html  css  js  c++  java
  • 仿分词统计的MapReduce 程序。

    HDFS 数据格式 : 
    举例单条数据:02-26 08:01:56 [qtp512249001-42] INFO  async-statistics - class com.spring.aop.StorageManagerStatAspect${"method":"com.systoon.scloud.master.controller.ImageController.download","ip":"172.28.6.131","port":"38001","father":"sun.reflect.GeneratedMethodAccessor8.invoke/null/-1","requestIp":"106.39.33.246","argsMap":{"org.eclipse.jetty.server.Request:0":{"requestURI":"/f/KZ0wxxbvFz924VaHS8JN1Fk42jV9OBMCHYoLtuc9sAkfF.jpg"},"org.eclipse.jetty.server.Response:1":1462183982},"processTime":50,"time":1456444916225,"retValMap":{":":"this object is null"}}

    是写出的一行日志。  日志结构是时间 + 打印的类 + JSON
    那么现在是要进行一个统计 MR 分析。

    那么开始上代码:
            
    1. import com.alibaba.fastjson.JSON;
    2. import com.alibaba.fastjson.JSONObject;
    3. import com.rocky.util.TimeUtils;
    4. import org.apache.hadoop.fs.FileSystem;
    5. import org.apache.hadoop.fs.Path;
    6. import org.apache.hadoop.io.IntWritable;
    7. import org.apache.hadoop.io.LongWritable;
    8. import org.apache.hadoop.io.Text;
    9. import org.apache.hadoop.mapred.*;
    10. import org.apache.hadoop.mapred.lib.MultipleOutputFormat;
    11. import org.apache.hadoop.util.Progressable;
    12. import java.io.IOException;
    13. import java.net.URI;
    14. import java.util.Iterator;
    15. public class MulOutput {
    16. public static final String clazz = "com.spring.aop.StorageManagerStatAspect";
    17. public static final String m_download = "com.systoon.scloud.master.controller.ImageController.download";
    18. public static final String m_upload = "com.systoon.scloud.master.controller.DirectUploadFile.directUploadFile";
    19. public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable>{
    20. private final static IntWritable one = new IntWritable(1);
    21. Text word = new Text();
    22. @Override
    23. public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,
    24. Reporter reporter) throws IOException {
    25. String line = value.toString();
    26. if(line.contains(clazz)){
    27. if(line.contains(m_download)){
    28. String tempObject = line.split(clazz)[1];
    29. String tmp = tempObject.substring(1,tempObject.length());
    30. JSONObject jsonObject = JSON.parseObject(tmp);
    31. String method = jsonObject.get("method").toString();
    32. if( method.equals(m_download) ){
    33. word.set("download");
    34. output.collect(word, one);
    35. }
    36. } else if(line.contains(m_upload)) {
    37. String tempObject = line.split(clazz)[1];
    38. String tmp = tempObject.substring(1,tempObject.length());
    39. JSONObject jsonObject = JSON.parseObject(tmp);
    40. String method = jsonObject.get("method").toString();
    41. if( method.equals(m_upload) ){
    42. word.set("upload");
    43. output.collect(word, one);
    44. }
    45. } else {
    46. word.set("debug");
    47. output.collect(word,one);
    48. }
    49. } else {
    50. word.set("others");
    51. output.collect(word, one);
    52. }
    53. }
    54. }
    55. public static class Reduce extends MapReduceBase
    56. implements Reducer<Text, IntWritable, Text, IntWritable> {
    57. public void reduce(Text key, Iterator<IntWritable> values,
    58. OutputCollector<Text, IntWritable> output, Reporter reporter)
    59. throws IOException{
    60. int sum = 0;
    61. while (values.hasNext()) {
    62. sum += values.next().get();
    63. }
    64. output.collect(key, new IntWritable(sum));
    65. }
    66. }
    67. public static void main(String[] args) throws Exception{
    68. JobConf jobConf = new JobConf(MulOutput.class);
    69. jobConf.setJobName("rocky_test");
    70. String outPath = "/test/mapReduce/statis"+TimeUtils.getStringDate();
    71. final FileSystem filesystem = FileSystem.get(new URI(outPath), jobConf);
    72. if(filesystem.exists(new Path(outPath))){
    73. filesystem.delete(new Path(outPath), true);
    74. }
    75. jobConf.setMapperClass(Map.class); //为job设置Mapper类
    76. jobConf.setMapOutputKeyClass(Text.class); //输出数据设置Key类
    77. jobConf.setMapOutputValueClass(IntWritable.class); //输出数据设置Key类
    78. jobConf.setCombinerClass(Reduce.class); // 为job设置Combiner类
    79. jobConf.setReducerClass(Reduce.class); // 为job设置Reduce类
    80. jobConf.setOutputKeyClass(Text.class); // 输出数据设置Key类
    81. jobConf.setOutputValueClass(IntWritable.class); // 输出数据设置Key类
    82. FileInputFormat.setInputPaths(jobConf, new Path("/test/mapReduce/statistics.log.2016-02-26"));
    83. // // 扫描组合path
    84. // FileInputFormat.addInputPath();
    85. jobConf.setOutputFormat(MyMultipleFilesTextOutputFormat.class);
    86. FileOutputFormat.setOutputPath(jobConf, new Path(outPath));
    87. JobClient.runJob(jobConf); //运行一个job
    88. }
    89. }


    简单来讲就是 Map 按行读, Reduce 进行汇总。   也是统计中最最常用的。  轻松解决问题。













    附件列表

      God has given me a gift. Only one. I am the most complete fighter in the world. My whole life, I have trained. I must prove I am worthy of someting. rocky_24
    • 相关阅读:
      Lyft Level 5 Challenge 2018
      Codeforces Round #514 (Div. 2)题解
      Bubble Cup 11
      不如来搞一下CDQ分治吧!
      Codeforces Round #331 (Div. 2)
      写一下中国剩余定理的证明
      codeforces Round#332Div2 题解
      GCPC2017 题解
      2017 USP Try-outs 题解
      CodeForce 387D. George and Interesting Graph
    • 原文地址:https://www.cnblogs.com/rocky24/p/f7a27b79fa8e5dfdc22fb535cadb86bc.html
    Copyright © 2011-2022 走看看