zoukankan      html  css  js  c++  java
  • SPOJ 687 Repeats 后缀数组

    和上一题差不多的方法。。没什么好说的

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    const int maxn = (5e4 + 10) * 4;
    
    #define F(x) ((x) / 3 + ((x) % 3 == 1 ? 0 : tb))
    #define G(x) ((x) < tb ? (x) * 3 + 1 : ((x) - tb) * 3 + 2)
    int wa[maxn], wb[maxn], wv[maxn], ws[maxn];
    int c0(int *r, int a, int b) {
    	return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2];
    }
    
    int c12(int k, int *r, int a, int b) {
    	if (k == 2) return r[a] < r[b] || r[a] == r[b] && c12(1, r, a + 1, b + 1);
    	else return r[a] < r[b] || r[a] == r[b] && wv[a + 1] < wv[b + 1];
    }
    
    void sort(int *r, int *a, int *b, int n, int m) {
    	int i;
    	for (i = 0; i < n; i++) wv[i] = r[a[i]];
    	for (i = 0; i < m; i++) ws[i] = 0;
    	for (i = 0; i < n; i++) ws[wv[i]]++;
    	for (i = 1; i < m; i++) ws[i] += ws[i - 1];
    	for (i = n - 1; i >= 0; i--) b[--ws[wv[i]]] = a[i];
    }
    
    void dc3(int *r, int *sa, int n, int m) {
    	int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p;
    	r[n] = r[n + 1] = 0;
    	for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i;
    	sort(r + 2, wa, wb, tbc, m);
    	sort(r + 1, wb, wa, tbc, m);
    	sort(r, wa, wb, tbc, m);
    	for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
    		rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++;
    	if (p < tbc) dc3(rn, san, tbc, p);
    	else for (i = 0; i < tbc; i++) san[rn[i]] = i;
    	for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
    	if (n % 3 == 1) wb[ta++] = n - 1;
    	sort(r, wb, wa, ta, m);
    	for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
    	for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
    		sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
    	for (; i < ta; p++) sa[p] = wa[i++];
    	for (; j < tbc; p++) sa[p] = wb[j++];
    }
    
    int Rank[maxn], height[maxn];
    
    void calheight(int *r, int *sa, int n) {
    	int i, j, k = 0;
    	for (i = 1; i <= n; i++) Rank[sa[i]] = i;
    	for (i = 0; i < n; height[Rank[i++]] = k)
    	for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++);
    }
    
    #undef F
    #undef G
    
    int str[maxn], sa[maxn], T, n, minv[maxn][30];
    
    void init_RMQ() {
    	for(int i = 0; i <= n; i++) {
    		minv[i][0] = height[i];
    	}
    	for(int j = 1; (1 << j) <= n + 1; j++) {
    		for(int i = 0; i + (1 << j) - 1 <= n; i++) {
    			minv[i][j] = min(minv[i][j - 1], minv[i + (1 << (j - 1))][j - 1]);
    		}
    	}
    }
    
    int query(int ql, int qr) {
    	if(ql > qr) swap(ql, qr);
    	ql++;
    	int k = 0;
    	while((1 << (k + 1)) <= qr - ql + 1) k++;
    	return min(minv[ql][k], minv[qr - (1 << k) + 1][k]);
    }
    
    int main() {
    	scanf("%d", &T);
    	while(T--) {
    		scanf("%d", &n);
    		for(int i = 0; i < n; i++) {
    			char tmp; scanf(" %c", &tmp);
    			str[i] = tmp;
    		}
    		str[n] = 0;
    		dc3(str, sa, n + 1, 200);
    		calheight(str, sa, n);
    		init_RMQ();
    		int maxstep = 1;
    		for(int L = 1; L <= n; L++) {
    			for(int i = 0; i + L < n; i += L)  {
    				int s1 = query(Rank[i], Rank[i + L]);
    				int step = s1 / L + 1, ql = i - (L - s1 % L);
    				if(ql >= 0) {
    					step = max(step, query(Rank[ql], Rank[ql + L]) / L + 1);
    				}
    				maxstep = max(maxstep, step);
    			}
    		}
    		printf("%d
    ", maxstep);
    	}
    	return 0;
    }
    
  • 相关阅读:
    【字符比较】文件内容比较方法
    【linux】ubuntu修改系统时间
    【常用脚本记录3 -- 磁盘读写脚本】
    【常用脚本记录2---压力测试脚本】
    Shell脚本相关
    cifs
    【cli命令集】
    【wlan】iw命令集合
    【实用linux命令记录】
    iOS----------关于Cornerstone的偏好设置
  • 原文地址:https://www.cnblogs.com/rolight/p/4006726.html
Copyright © 2011-2022 走看看