zoukankan      html  css  js  c++  java
  • 线段树(区间求和、插入、查询最大最小值)-- 模板

    题目:
    给你一个数组A[1::n],初始时每个元素都为零。对数组完成一些操作:
    第一种可能,给你两个数p 和x(1<= p <= n),把数组的第p 个元素替换为x,即A[p] =x.
    第二种可能,给你两个数L 和R(1 <=L <= R <= n),请给出A[L]; A[L + 1]; : : : ; A[R] 这几个数中去掉一个最大值和一个最小值后剩下的数的和是多少.

    题解:
    单点修改、区间查询的线段树可以在O(log n) 的时间内维护区间的和、最大值、最小值.
    此题用三个线段树维护各个区间的和、最大值、最小值,对每个查询输出对应区间的sum . max . min 即可.

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    
    const int maxn = 1e6 + 5;
    struct node {
        int left, right;
        int  mx, mn;
        ll sum;
    }rt[maxn * 4];
    
    int tl(int x) { return x * 2; }
    int tr(int x) { return x * 2 + 1; }
    
    void pushup(int x) {
        rt[x].sum = rt[tl(x)].sum + rt[tr(x)].sum;
        rt[x].mx = max(rt[tl(x)].mx, rt[tr(x)].mx);
        rt[x].mn = min(rt[tl(x)].mn, rt[tr(x)].mn);
    }
    
    void build(int x,int L,int R) {
        rt[x].left = L; rt[x].right = R;
        if (L == R) {
            rt[x].sum = rt[x].mn = rt[x].mx = 0;
            return;
        }
        int mid = L + R >> 1;
        build(tl(x), L, mid); build(tr(x), mid + 1, R);
        pushup(x);
    }
    
    void upd(int x, int pos, ll val) {
        if (rt[x].left == rt[x].right) {
            rt[x].sum = rt[x].mn = rt[x].mx = val;
            return;
        }
        int mid = rt[x].left + rt[x].right >> 1;
        if (pos <= mid)upd(tl(x), pos, val);
        else upd(tr(x), pos, val);
        pushup(x);
    }
    
    ll qury(int x, int L, int R) {
        if (L == rt[x].left&&R == rt[x].right) {
            return rt[x].sum;
        }
        int mid = rt[x].left + rt[x].right >> 1;
        if (R <= mid) return qury(tl(x), L, R);
        else if (L > mid) return qury(tr(x), L, R);
        else return qury(tl(x), L, mid) + qury(tr(x), mid + 1, R);
    }
    
    ll fmin(int x, int L, int R) {
        if (L == rt[x].left&&R == rt[x].right) {
            return rt[x].mn;
        }
        int mid = rt[x].left + rt[x].right >> 1;
        ll ret = 0x3fffffffffffff;
        if (R <= mid) return min(ret, fmin(tl(x), L, R));
        else if (L > mid) return min(ret, fmin(tr(x), L, R));
        else return min(fmin(tl(x), L, mid), fmin(tr(x), mid + 1, R));
    }
    
    ll fmax(int x, int L, int R) {
        if (L == rt[x].left&&R == rt[x].right) {
            return rt[x].mx;
        }
        int mid = rt[x].left + rt[x].right >> 1;
        ll ret = -0x3ffffffffffffff;
        if (R <= mid) return max(ret, fmax(tl(x), L, R));
        else if (L > mid) return max(ret, fmax(tr(x), L, R));
        else return max(fmax(tl(x), L, mid), fmax(tr(x), mid + 1, R));
    }
    
    int main() {
        int n, m;
        scanf("%d%d", &n, &m);
        build(1, 1, n);
        while (m--) {
            int o, x, y;
            scanf("%d%d%d", &o, &x, &y);
            if (o == 0) upd(1, x, y);
            else printf("%lld
    ", qury(1, x, y) - fmax(1, x, y) - fmin(1, x, y));
        }
        return 0;
    }
    
  • 相关阅读:
    mysql 索引
    mysql binlog相关知识
    分布式系统日志
    学习路线
    分布式学习
    工具
    关于java面试
    mysql悲观锁总结和实践(转)
    app技术博客整理
    Java编程一些经验
  • 原文地址:https://www.cnblogs.com/romaLzhih/p/9489838.html
Copyright © 2011-2022 走看看