#示例
import numpy as np
import tensorflow as tf
x_data = np.random.rand(100)
y_data = .1 * x_data +.2
## 构造一个线性模型优化器
#优化 $y = kx+b$
#待优化的参数
b = tf.Variable(0.)
k = tf.Variable(0.)
y = k * x_data + b
## 二次代价函数
loss = tf.reduce_mean(tf.square(y_data - y))
## 指定优化器
optimizer = tf.train.GradientDescentOptimizer(0.2)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(200):
sess.run(train)
if step%20==0:
print(step,'[k,b]:',sess.run([k,b]))