zoukankan      html  css  js  c++  java
  • tensorboard --logdir=F:pythonuntitled1corelogs

    #C:UsersmxfvenvScripts


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data

    # In[2]:

    # 载入数据集
    mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

    # 每个批次的大小
    batch_size = 100
    # 计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size

    # 命名空间
    with tf.name_scope('input'):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

    with tf.name_scope('layer'):
    # 创建一个简单的神经网络
    with tf.name_scope('wights'):
    W = tf.Variable(tf.zeros([784, 10]), name='W')
    with tf.name_scope('biases'):
    b = tf.Variable(tf.zeros([10]), name='b')
    with tf.name_scope('wx_plus_b'):
    wx_plus_b = tf.matmul(x, W) + b
    with tf.name_scope('softmax'):
    prediction = tf.nn.softmax(wx_plus_b)

    # 二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    with tf.name_scope('train'):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

    # 初始化变量
    init = tf.global_variables_initializer()

    with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
    # 结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/', sess.graph)
    for epoch in range(1):
    for batch in range(n_batch):
    batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})

    acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
    print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

  • 相关阅读:
    为什么要用MarkDown?
    Android Studio: Application Installation Failed
    git查看某个文件修改历史
    有些事现在不做,一辈子都不会做了
    onMouseOver&onMouseOut vs onMouseEnter&onMouseLeave
    versionCode & versionName
    display:none vs visibility:hidden
    polyfill
    combineReducers
    React Context
  • 原文地址:https://www.cnblogs.com/rongye/p/10009323.html
Copyright © 2011-2022 走看看