zoukankan      html  css  js  c++  java
  • tensorbord 可视化

    #!/usr/bin/env python

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    from tensorflow.contrib.tensorboard.plugins import projector

    # In[2]:

    # 载入数据集
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    # 运行次数
    max_steps = 1001
    # 图片数量
    image_num = 3000
    # 文件路径
    DIR = "F:/python/untitled1/core/"

    # 定义会话
    sess = tf.Session()

    # 载入图片
    embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding')


    # 参数概要
    def variable_summaries(var):
    with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean) # 平均值
    with tf.name_scope('stddev'):
    stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev) # 标准差
    tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
    tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
    tf.summary.histogram('histogram', var) # 直方图


    # 命名空间
    with tf.name_scope('input'):
    # 这里的none表示第一个维度可以是任意的长度
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    # 正确的标签
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

    # 显示图片
    with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)

    with tf.name_scope('layer'):
    # 创建一个简单神经网络
    with tf.name_scope('weights'):
    W = tf.Variable(tf.zeros([784, 10]), name='W')
    variable_summaries(W)
    with tf.name_scope('biases'):
    b = tf.Variable(tf.zeros([10]), name='b')
    variable_summaries(b)
    with tf.name_scope('wx_plus_b'):
    wx_plus_b = tf.matmul(x, W) + b
    with tf.name_scope('softmax'):
    prediction = tf.nn.softmax(wx_plus_b)

    with tf.name_scope('loss'):
    # 交叉熵代价函数
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    tf.summary.scalar('loss', loss)
    with tf.name_scope('train'):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

    # 初始化变量
    sess.run(tf.global_variables_initializer())

    with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
    # 结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 把correct_prediction变为float32类型
    tf.summary.scalar('accuracy', accuracy)

    # 产生metadata文件
    if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'):
    tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv')
    with open(DIR + 'projector/projector/metadata.tsv', 'w') as f:
    labels = sess.run(tf.argmax(mnist.test.labels[:], 1))
    for i in range(image_num):
    f.write(str(labels[i]) + ' ')

    # 合并所有的summary
    merged = tf.summary.merge_all()

    projector_writer = tf.summary.FileWriter(DIR + 'projector/projector', sess.graph)
    saver = tf.train.Saver()
    config = projector.ProjectorConfig()
    embed = config.embeddings.add()
    embed.tensor_name = embedding.name
    embed.metadata_path = DIR + 'projector/projector/metadata.tsv'
    embed.sprite.image_path = DIR + 'mnist_10k_sprite.png'
    embed.sprite.single_image_dim.extend([28, 28])
    projector.visualize_embeddings(projector_writer, config)

    for i in range(max_steps):
    # 每个批次100个样本
    batch_xs, batch_ys = mnist.train.next_batch(100)
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys}, options=run_options,
    run_metadata=run_metadata)
    projector_writer.add_run_metadata(run_metadata, 'step%03d' % i)
    projector_writer.add_summary(summary, i)

    if i % 100 == 0:
    acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
    print("Iter " + str(i) + ", Testing Accuracy= " + str(acc))

    saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps)
    projector_writer.close()
    sess.close()
  • 相关阅读:
    预习非数值数据的编码方式
    预习原码补码
    C语言||作业01
    C语言寒假大作战04
    C语言寒假大作战03
    C语言寒假大作战02
    C语言寒假大作战01
    C语言|作业12—学期总结
    C语言|博客作业11
    第三章预习
  • 原文地址:https://www.cnblogs.com/rongye/p/10009511.html
Copyright © 2011-2022 走看看