zoukankan      html  css  js  c++  java
  • 卷积+池化+卷积+池化+全连接2

    #!/usr/bin/env python

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data

    # In[2]:

    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

    # 每个批次的大小
    batch_size = 100
    # 计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size

    # 初始化权值
    def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1) # 生成一个截断的正态分布
    return tf.Variable(initial)


    # 初始化偏置
    def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


    # 卷积层
    def conv2d(x, W):
    # x input tensor of shape `[batch, in_height, in_width, in_channels]`
    # W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
    # `strides[0] = strides[3] = 1`. strides[1]代表x方向的步长,strides[2]代表y方向的步长
    # padding: A `string` from: `"SAME", "VALID"`
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


    # 池化层
    def max_pool_2x2(x):
    # ksize [1,x,y,1]
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    # 改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]`
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    # 初始化第一个卷积层的权值和偏置
    W_conv1 = weight_variable([5, 5, 1, 16]) # 5*5的采样窗口,32个卷积核从1个平面抽取特征
    b_conv1 = bias_variable([16]) # 每一个卷积核一个偏置值
    # 把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    conv2d_1 = conv2d(x_image, W_conv1) + b_conv1
    h_conv1 = tf.nn.relu(conv2d_1)
    h_pool1 = max_pool_2x2(h_conv1) # 进行max-pooling
    # 初始化第二个卷积层的权值和偏置
    W_conv2 = weight_variable([5, 5, 16, 32]) # 5*5的采样窗口,64个卷积核从32个平面抽取特征
    b_conv2 = bias_variable([32]) # 每一个卷积核一个偏置值
    # 把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    conv2d_2 = conv2d(h_pool1, W_conv2) + b_conv2
    h_conv2 = tf.nn.relu(conv2d_2)
    h_pool2 = max_pool_2x2(h_conv2) # 进行max-pooling
    # 28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
    # 第二次卷积后为14*14,第二次池化后变为了7*7
    # 进过上面操作后得到64张7*7的平面
    # 初始化第一个全连接层的权值
    W_fc1 = weight_variable([7 * 7 * 32, 512]) # 上一场有7*7*64个神经元,全连接层有1024个神经元
    b_fc1 = bias_variable([512]) # 1024个节点
    # 把池化层2的输出扁平化为1维
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 32])
    # 求第一个全连接层的输出
    wx_plus_b1 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1
    h_fc1 = tf.nn.relu(wx_plus_b1)
    # keep_prob用来表示神经元的输出概率
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    # 初始化第二个全连接层
    W_fc2 = weight_variable([512, 10])
    b_fc2 = bias_variable([10])
    wx_plus_b2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    # 计算输出
    prediction = tf.nn.softmax(wx_plus_b2)
    # 交叉熵代价函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    # 使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    # 结果存放在一个布尔列表中
    correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) # argmax返回一维张量中最大的值所在的位置
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(11):
    for batch in range(n_batch):
    batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.7})
    acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
    print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

    Iter 0, Testing Accuracy= 0.9366
    Iter 1, Testing Accuracy= 0.9602
    Iter 2, Testing Accuracy= 0.9677
    Iter 3, Testing Accuracy= 0.9735
    Iter 4, Testing Accuracy= 0.9769
    Iter 5, Testing Accuracy= 0.9803
    Iter 6, Testing Accuracy= 0.9783
    Iter 7, Testing Accuracy= 0.9842
    Iter 8, Testing Accuracy= 0.9839
    Iter 9, Testing Accuracy= 0.9853
    Iter 10, Testing Accuracy= 0.9848

  • 相关阅读:
    C 运算符, 有符号数据运算,
    P1337 [JSOI2004]平衡点 / 吊打XXX 模拟退火
    [POI2011]Garbage 欧拉回路
    # bzoj2215: [Poi2011]Conspiracy 2-sat
    hdu1814 Peaceful Commission 2-sat
    2-sat相关复习
    #2718. 「NOI2018」归程 kruskal重构树
    JXOI2018守卫 区间DP
    [NOI1995]石子合并 四边形不等式优化
    3900: 交换茸角
  • 原文地址:https://www.cnblogs.com/rongye/p/10012915.html
Copyright © 2011-2022 走看看