zoukankan      html  css  js  c++  java
  • 递归神经网络RNN


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data

    # In[2]:

    # 载入数据集
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    # 输入图片是28*28
    n_inputs = 28 # 输入一行,一行有28个数据
    max_time = 28 # 一共28行
    lstm_size = 100 # 隐层单元
    n_classes = 10 # 10个分类
    batch_size = 50 # 每批次50个样本
    n_batch = mnist.train.num_examples // batch_size # 计算一共有多少个批次

    # 这里的none表示第一个维度可以是任意的长度
    x = tf.placeholder(tf.float32, [None, 784])
    # 正确的标签
    y = tf.placeholder(tf.float32, [None, 10])

    # 初始化权值
    weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
    # 初始化偏置值
    biases = tf.Variable(tf.constant(0.1, shape=[n_classes]))


    # 定义RNN网络
    def RNN(X, weights, biases):
    # inputs=[batch_size, max_time, n_inputs]
    inputs = tf.reshape(X, [-1, max_time, n_inputs])
    # 定义LSTM基本CELL
    #lstm_cell = tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size)
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_size)
    # final_state[0]是cell state
    # final_state[1]是hidden_state
    outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32)
    results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases)
    return results


    # 计算RNN的返回结果
    prediction = RNN(x, weights, biases)
    # 损失函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
    # 使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    # 结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 把correct_prediction变为float32类型
    # 初始化
    init = tf.global_variables_initializer()

    with tf.Session() as sess:
    sess.run(init)
    for epoch in range(5):
    for batch in range(n_batch):
    batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})

    acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
    print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
  • 相关阅读:
    如何选择一款程序员理想中的显示器
    群英论道聚北京,共话PostgreSQL
    中国人民大学教授杜小勇:One Size Does not Fit All?
    4个技巧,教你如何用excel绘制出高大上的图表
    容易被误读的IOSTAT
    【Android Studio安装部署系列】四、Android SDK目录和作用分析
    【Android Studio安装部署系列】四、Android SDK目录和作用分析
    【Android Studio安装部署系列】四、Android SDK目录和作用分析
    【Android Studio安装部署系列】四、Android SDK目录和作用分析
    Java框架 面试题总结
  • 原文地址:https://www.cnblogs.com/rongye/p/10013100.html
Copyright © 2011-2022 走看看