zoukankan      html  css  js  c++  java
  • tensorbord 练习



    """
    Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
    """
    import tensorflow as tf
    import numpy as np


    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    # add one more layer and return the output of this layer
    layer_name = 'layer%s' % n_layer
    with tf.name_scope(layer_name):
    with tf.name_scope('weights'):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
    tf.summary.histogram(layer_name + '/weights', Weights)
    with tf.name_scope('biases'):
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
    tf.summary.histogram(layer_name + '/biases', biases)
    with tf.name_scope('Wx_plus_b'):
    Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
    if activation_function is None:
    outputs = Wx_plus_b
    else:
    outputs = activation_function(Wx_plus_b, )
    tf.summary.histogram(layer_name + '/outputs', outputs)
    return outputs


    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise

    # define placeholder for inputs to network
    with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

    # add hidden layer
    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

    # the error between prediciton and real data
    with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
    reduction_indices=[1]))
    tf.summary.scalar('loss', loss)

    with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    sess = tf.Session()
    merged = tf.summary.merge_all()
    writer = tf.summary.FileWriter("logs/", sess.graph)
    # important step
    sess.run(tf.global_variables_initializer())

    for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
    result = sess.run(merged,
    feed_dict={xs: x_data, ys: y_data})
    writer.add_summary(result, i)
  • 相关阅读:
    C#实现注册码
    多表链接 Left join
    Repeater 一行显示两列数据
    Repeater一行显示数据库中多行表记录
    HP QC(Quality Center)在Windows 7 IE8 IE9下不能工作解决方案
    Android应用换肤总结
    Lua 第一个应用程序 Hello World
    JNI 技术与 Android 应用
    NSAutoreleasePool' is unavailable: not avail
    1-2基础控件
  • 原文地址:https://www.cnblogs.com/rongye/p/10124599.html
Copyright © 2011-2022 走看看