zoukankan      html  css  js  c++  java
  • 实现一个单隐层神经网络

      仅仅记录神经网络编程主线。

           一 引用工具包

    import numpy as np
    import matplotlib.pyplot as plt
    from testCases import *
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    
    %matplotlib inline
    
    np.random.seed(1) # set a seed so that the results are consistent

      二 读入数据集

      输入函数实现在最下面附录

    X, Y = load_planar_dataset()

      lanar是二分类数据集,可视化如下图,外形像花的一样的非线性数据集。

    plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

     

    - 特征 (x1, x2)
    - 类别 (red:0, blue:1). 

    三 神经网络结构

     对于输入样本x,前向传播计算如下公式:

    损失函数J:

    输入样本X:[n_x,m]; 假设输入m个样本,每个样本k维,输入神经元n_x个数=特征维度k,输出神经个数n_y=类别个数。

    • W1:[n_h,n_x];
    • b1:[n_h,1];
    • W2:[n_y,n_h];
    • b2:[n_y,1];
    • trick:Wi第一维是第i+1层的神经元个数,第二维是第i层的神经元个数;bi第一维是第i层的神经元个数,第二维永远是1,因为python有broadcast机制,自动对齐。

    def layer_sizes(X, Y):
    """
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)

    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    """
    ### START CODE HERE ### (≈ 3 lines of code)
    n_x = X.shape[0] # size of input layer
    n_h = 4
    n_y = Y.shape[0] # size of output layer
    ### END CODE HERE ###
    return (n_x, n_h, n_y)

    四 初始化参数

     W1,W2:不能初始化为0矩阵,如果这样第一个隐藏所有神经元梯度都和第一个一样: np.random.randn(a,b) * 0.01 .

        b1,b2.:初始化为0向量 np.zeros((a,b)).

    def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer

    Returns:
    params -- python dictionary containing your parameters:
    W1 -- weight matrix of shape (n_h, n_x)
    b1 -- bias vector of shape (n_h, 1)
    W2 -- weight matrix of shape (n_y, n_h)
    b2 -- bias vector of shape (n_y, 1)
    """

    np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.

    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h, n_x)*0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h)*0.01
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###

    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1,
    "b1": b1,
    "W2": W2,
    "b2": b2}

    return parameters

      

    五 前向传播

      cache缓存计算结果,反向传播需要。

    def forward_propagation(X, parameters):
    """
    Argument:
    X -- input data of size (n_x, m)
    parameters -- python dictionary containing your parameters (output of initialization function)

    Returns:
    A2 -- The sigmoid output of the second activation
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###

    # Implement Forward Propagation to calculate A2 (probabilities)
    ### START CODE HERE ### (≈ 4 lines of code)
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)
    ### END CODE HERE ###

    assert(A2.shape == (1, X.shape[1]))

    cache = {"Z1": Z1,
    "A1": A1,
    "Z2": Z2,
    "A2": A2}

    return A2, cache

    六 计算损失函数

      

    def compute_cost(A2, Y, parameters):
    """
    Computes the cross-entropy cost given in equation (13)

    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    parameters -- python dictionary containing your parameters W1, b1, W2 and b2

    Returns:
    cost -- cross-entropy cost given equation (13)
    """

    m = float(Y.shape[1]) # number of example

    # Compute the cross-entropy cost
    ### START CODE HERE ### (≈ 2 lines of code)
    logprobs = np.multiply(np.log(A2),Y) + np.multiply((1-Y), (np.log(1-A2)))
    cost = -1/m * np.sum(logprobs)
    ### END CODE HERE ###

    cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
    # E.g., turns [[17]] into 17
    assert(isinstance(cost, float))

    return cost

    七 反向传播

    • 每个参数的维度
      • dW1:[n_h,n_x];
      • db1:[n_h,1];
      • dW2:[n_y,n_h];
      • db2:[n_y,1];
    • trick:dW1,db1,dW2,db2和W1,b1,W2,b2的维度一模一样。

    def backward_propagation(parameters, cache, X, Y):
    """
    Implement the backward propagation using the instructions above.

    Arguments:
    parameters -- python dictionary containing our parameters
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
    X -- input data of shape (2, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)

    Returns:
    grads -- python dictionary containing your gradients with respect to different parameters
    """
    m = float(X.shape[1])

    # First, retrieve W1 and W2 from the dictionary "parameters".
    ### START CODE HERE ### (≈ 2 lines of code)
    W1 = parameters['W1']
    W2 = parameters['W2']
    ### END CODE HERE ###

    # Retrieve also A1 and A2 from dictionary "cache".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1 = cache['A1']
    A2 = cache['A2']
    ### END CODE HERE ###

    # Backward propagation: calculate dW1, db1, dW2, db2.
    ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
    dZ2= A2 - Y
    dW2 =1/m * np.dot(dZ2, A1.T)
    db2 =1/m * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))
    dW1 = 1/m * np.dot(dZ1, X.T)
    db1 =1/m * np.sum(dZ1, axis=1, keepdims=True)
    ### END CODE HERE ###

    grads = {"dW1": dW1,
    "db1": db1,
    "dW2": dW2,
    "db2": db2}

    return grads

    八 梯度更新 

    优化过程,梯度更新: 使用 (dW1, db1, dW2, db2) 更新参数 (W1, b1, W2, b2).

    梯度下降公式: 其中 α 是学习率.

    学习率: 如图所示,不同学习率,熟练情况不一样.

    def update_parameters(parameters, grads, learning_rate = 1.2):
    """
    Updates parameters using the gradient descent update rule given above

    Arguments:
    parameters -- python dictionary containing your parameters
    grads -- python dictionary containing your gradients

    Returns:
    parameters -- python dictionary containing your updated parameters
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###

    # Retrieve each gradient from the dictionary "grads"
    ### START CODE HERE ### (≈ 4 lines of code)
    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]
    ## END CODE HERE ###

    # Update rule for each parameter
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    ### END CODE HERE ###

    parameters = {"W1": W1,
    "b1": b1,
    "W2": W2,
    "b2": b2}

    return parameters

    九 模型 

         将前面的函数整合成模型:

      实现步骤:

    1. 定义网络结构. 
    2. 初始化参数
    3. Loop:
        - 前向传播
        - 计算损失函数
        - 反向传播计算梯度
        - 更新梯度

    def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
    """
    Arguments:
    X -- dataset of shape (2, number of examples)
    Y -- labels of shape (1, number of examples)
    n_h -- size of the hidden layer
    num_iterations -- Number of iterations in gradient descent loop
    print_cost -- if True, print the cost every 1000 iterations

    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """

    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]

    # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
    ### START CODE HERE ### (≈ 5 lines of code)
    n_x, n_h, n_y = layer_sizes(X, Y)
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###

    # Loop (gradient descent)

    for i in range(0, num_iterations):

    ### START CODE HERE ### (≈ 4 lines of code)
    # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
    A2, cache = forward_propagation(X, parameters)

    # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
    cost = compute_cost(A2, Y, parameters)

    # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
    grads = backward_propagation(parameters, cache, X, Y)

    # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
    parameters = update_parameters(parameters, grads)

    ### END CODE HERE ###

    # Print the cost every 1000 iterations
    if print_cost and i % 1000 == 0:
    print ("Cost after iteration %i: %f" %(i, cost))

    return parameters

     

    十 预测 

         

    • 对于一个样本,预估概率大于阈值0.5的为1,否则为0.

      

    def predict(parameters, X):
    """
    Using the learned parameters, predicts a class for each example in X

    Arguments:
    parameters -- python dictionary containing your parameters
    X -- input data of size (n_x, m)

    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
    ### START CODE HERE ### (≈ 2 lines of code)
    A2, cache = forward_propagation(X, parameters)
    predictions = np.array( [1 if x >0.5 else 0 for x in A2.reshape(-1,1)] ).reshape(A2.shape) # 这一行代码的作用详见下面代码示例
    ### END CODE HERE ###

    return predictions

     planar数据集测试单隐层神经网络性能,隐层神经元个数设置为4.

    # Build a model with a n_h-dimensional hidden layer
    parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
    
    # Plot the decision boundary
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    plt.title("Decision Boundary for hidden layer size " + str(4))

    输出结果

     附录:load输入数据集

    import matplotlib.pyplot as plt
    import numpy as np
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    
    def plot_decision_boundary(model, X, y):
        # Set min and max values and give it some padding
        x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
        y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
        h = 0.01
        # Generate a grid of points with distance h between them
        
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole grid
        Z = model(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) 
        plt.ylabel('x2')
        plt.xlabel('x1')
        plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
        
    
    def sigmoid(x):
        """
        Compute the sigmoid of x
    
        Arguments:
        x -- A scalar or numpy array of any size.
    
        Return:
        s -- sigmoid(x)
        """
        s = 1/(1+np.exp(-x))
        return s
    
    def load_planar_dataset():
        np.random.seed(1)
        m = 400 # number of examples
        N = int(m/2) # number of points per class
        D = 2 # dimensionality
        X = np.zeros((m,D)) # data matrix where each row is a single example
        Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
        a = 4 # maximum ray of the flower
    
        for j in range(2):
            ix = range(N*j,N*(j+1))
            t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
            r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
            X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
            Y[ix] = j
            
        X = X.T
        Y = Y.T
    
        return X, Y
    
    def load_extra_datasets():  
        N = 200
        noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
        noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
        blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
        gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
        no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
        
        return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

    参考:

  • 相关阅读:
    前端基础之CSS
    前端基础之HTML(三)
    前端基础之HTML(二)
    前端基础之HTML(一)
    面向对象总结
    内置函数总结
    函数部分总结
    文件操作总结
    基础数据类型总结
    python基础知识总结
  • 原文地址:https://www.cnblogs.com/rongyux/p/7742152.html
Copyright © 2011-2022 走看看