zoukankan      html  css  js  c++  java
  • opencv的Kmeans聚类算法应用

    1、输入原始图片

     2、代码实现:

    #include<opencv2opencv.hpp>
    #include<iostream>
    using namespace std;
    using namespace cv;
    int main() {
        Mat src = imread("C:/Users/lzg/Desktop/opencv_test/Project1/1.png");
        if (src.empty()) {
            cout << "meiyoutu" << endl;
        }
        namedWindow("input", CV_WINDOW_AUTOSIZE);
        imshow("input", src);
        Scalar colorTab[] = {
            Scalar(0,0,255),
            Scalar(0,255,0),
            Scalar(255,0,0),
            Scalar(0,255,255),
            Scalar(255,0,255)
        };
        int width = src.cols;
        int height = src.rows;
        int dims = src.channels();
        int sampleCount = width*height;
        int clusterCount = 4;
        Mat points(sampleCount, dims, CV_32F, Scalar(10));
        Mat labels;
        Mat centers(clusterCount, 1, points.type());
        int index = 0;
        for (int row = 0; row < height; row++) {    //RGB数据转换到样本数据
            for (int col = 0; col < width; col++) {
                index = row*width + col;
                Vec3b bgr = src.at<Vec3b>(row, col);
                points.at<float>(index, 0) = static_cast<int>(bgr[0]);
                points.at<float>(index, 1) = static_cast<int>(bgr[1]);
                points.at<float>(index, 2) = static_cast<int>(bgr[2]);
            }
        }
        //运行Kmeans
        TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); //迭代停止条件
        kmeans(points, clusterCount, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
        //显示图像分割结果,要把样本数据点转换回去
        Mat result = Mat::zeros(src.size(), src.type());
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                index = row*width + col;
                int label = labels.at<int>(index, 0);
                result.at<Vec3b>(row, col)[0] = colorTab[label][0];
                result.at<Vec3b>(row, col)[1] = colorTab[label][1];
                result.at<Vec3b>(row, col)[2] = colorTab[label][2];
            }
        }
        imshow("KMeans image segmentation demo", result);
        waitKey(0);
        return 0;

    效果图:

  • 相关阅读:
    9.8-9.9多校互测与牛客网提高一测
    数位$dp$
    互不侵犯_状压$dp$
    状态压缩dp初学__$Corn Fields$
    树形$dp$学习笔记
    最长公共上升子序列$LCIS$
    区间dp学习笔记
    保护知识产权,让创新更有动力!
    crmeb后台七牛云存储相关配置步骤
    crmeb一款最适合二次开发的开源微信公众号小程序框架
  • 原文地址:https://www.cnblogs.com/roscangjie/p/11187055.html
Copyright © 2011-2022 走看看