zoukankan      html  css  js  c++  java
  • FPGA算法学习(1) -- Cordic(圆周系统之向量模式)

    旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法——圆周系统之旋转模式。那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的直角坐标(x,y),求其极坐标(α,γ),实际上是求arctan(y/x)。

    旋转模式下,每次迭代使z趋近于α(α-z趋近于0),而向量模式下,则使y趋近于0,这一点很好理解,即从坐标位置,旋转到x正半轴,一共旋转了多少角度,则该角度即为α,从而知道了极角。

    如图所示,在单位圆上,向量OP与X轴的正半轴夹角为α,故P点的坐标可表示为

    根据开头描述,我们需要转动向量OP,先顺时针旋转θ角至向量OQ,Q点的坐标可表示为

    这里定义θ为目标旋转角度。根据三角函数公式可将上式展开为

    现在已经有点 Cordic 算法的样子了,但是我们看到每次旋转都要计算 4 次浮点数的乘法运算,运算量还是太大了。还需要进一步的改进,改进的切入点当然还是坐标变换的过程。

    将式(1.1)代入到式(1.3)中可得

    用矩阵形式表示为:

    旋转了i次以后,可以得到:

    最终需将y_Q_i+1转为0,先按45°的二分法查找来解释过程,用C语言描述过程为:

    #include <stdio.h>
    #include <stdlib.h>
    
    double cordic_v(double x, double y);
    
    int main(viod)
    {
    	double alfa = cordic_v(120.0,200.0);		//直角坐标(x,y)
    	printf("
     极角为 = %f 
    ",alfa);
    	return 0;
    }
    double cordic_v(double x, double y)
    {
    	const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,
    						0.09801714032956,0.04906767432742,0.02454122852291,0.01227153828572,
    						0.006135884649154,0.003067956762966,0.001533980186285,
    						7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
    						9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
    						};
    
    	const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
    							0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
    							0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
    							0.999999998851,0.9999999997128
    						};
    	int i = 0;
    	double x_new, y_new;
    	double angleSum = 0.0;
    	double angle = 45.0;		//第一次旋转角度为45°
    	for( i=0; i<15;i++)
    	{
    		if(y > 0)
    		{
    			x_new = x * cosine[i] + y * sine[i];
    			y_new = y * cosine[i] - x * sine[i];
    			x = x_new;
    			y = y_new;
    			angleSum += angle;
    		}
    		
    		else
    		{
    			x_new = x * cosine[i] - y * sine[i];
    			y_new = y * cosine[i] + x * sine[i];
    			x = x_new;
    			y = y_new;
    			angleSum -= angle;
    		}
    		printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f
    ", i+1, angle,angleSum );
    		angle /= 2;
    	}
    	return angleSum;
    }
    

    经过旋转模式的推导,向量模式的伪旋转公式,可表示为

    C语言描述过程,如下:

    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    
    double cordic_v(double x, double y);
    double r = 0.0;	//定义一个模长全局变量		
    
    int main(viod)
    {
    	double alfa = cordic_v(120.0,200.0);		//直角坐标(x,y)
    	printf("
    极角 = %5f, 模长 = %5f
    ",alfa,r);
    	return 0;
    }
    double cordic_v(double x, double y)
    {
    	const double theta[] = { 45.0, 26.56505118, 14.03624347, 7.125016349, 
    						3.576334375, 1.789910608, 0.8951737102, 0.4476141709, 
    						0.2238105004, 0.1119056771, 0.05595289189, 0.02797645262, 
    						0.01398822714, 0.006994113675, 0.003497056851, 0.001748528427
    						}; //旋转角度
    	int i = 0;
    	double x_new, y_new;
    	double angleSum = 0.0;
    	r = sqrt(x*x+y*y);
    	for( i=0; i<16;i++)
    	{
    		if(y > 0)
    		{
    			x_new = x + y/(1<<i);
    			y_new = y - x/(1<<i);
    			x = x_new;
    			y = y_new;
    			angleSum += theta[i];
    		}
    		
    		else
    		{
    			x_new = x - y/(1<<i);
    			y_new = y + x/(1<<i);
    			x = x_new;
    			y = y_new;
    			angleSum -= theta[i];
    		}
    		printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f, y = %5f
    ", i+1,theta[i],angleSum,y );
    	}
    	return angleSum;
    }
    

    同样,向量模式的cordic算法适用于第一、四象限的坐标变换,在第二、三象限的坐标需要进行预处理。

    参考

  • 相关阅读:
    MVVM框架-MVVMLight
    WPF多值绑定及多值转换(MultiBinding和IMultiValueConverter)
    WPF使用转换器(Converter)
    WPF绑定功能常用属性介绍
    WPF绑定属性
    Java工作笔记:工作中使用JNA调用C++库的一些细节(转载)
    关于使用sudo命令后找不到JAVA_HOME的问题
    IDEA入门级使用教程
    dubbo协议参考手册(转)
    Javascript 基础夯实 —— 使用 webWorker 实现多线程(转)
  • 原文地址:https://www.cnblogs.com/rouwawa/p/7101703.html
Copyright © 2011-2022 走看看