SPOJ NSUBSTR
Problem : 给一个长度为n的字符串,要求分别输出长度为1~n的子串的最多出现次数。
Solution :首先对字符串建立后缀自动机,在根据fail指针建立出后缀树,对于n个后缀对应的节点打上标记,则每个结点对应的一些子串所出现的次数即为其子树内标记的个数,在后缀树上进行1遍dfs统计,之后根据答案的单调性线性扫描一遍进行统计。
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
const int N = 250008;
struct node
{
int u, v, nt;
};
struct Suffix_Automaton
{
int nt[N << 1][26], a[N << 1], fail[N << 1];
int tot, last, root;
int p, q, np, nq;
int lt[N << 1], sum;
node eg[N << 2];
int dp[N << 1], cnt[N << 1];
void add(int u, int v)
{
eg[++sum] = (node){u, v, lt[u]}; lt[u] = sum;
eg[++sum] = (node){v, u, lt[v]}; lt[v] = sum;
}
int newnode(int len)
{
for (int i = 0; i < 26; ++i) nt[tot][i] = -1;
fail[tot] = -1; a[tot] = len;
return tot++;
}
void clear()
{
memset(lt, 0, sizeof(lt));
tot = last = 0; sum = 0;
root = newnode(0);
}
void insert(int ch)
{
p = last; last = np = newnode(a[p] + 1); cnt[np] = 1;
for (; ~p && nt[p][ch] == -1; p = fail[p]) nt[p][ch] = np;
if (p == -1) fail[np] = root;
else
{
q = nt[p][ch];
if (a[p] + 1 == a[q]) fail[np] = q;
else
{
nq = newnode(a[p] + 1);
for (int i = 0; i < 26; ++i) nt[nq][i] = nt[q][i];
fail[nq] = fail[q];
fail[np] = fail[q] = nq;
for (; ~p && nt[p][ch] == q; p = fail[p]) nt[p][ch] = nq;
}
}
}
void dfs(int u, int fa)
{
for (int i = lt[u]; i; i = eg[i].nt)
{
int v = eg[i].v;
if (v != fa)
{
dfs(v, u);
cnt[u] += cnt[v];
}
}
dp[a[u]] = max(dp[a[u]], cnt[u]);
}
void solve(int len)
{
for (int i = 1; i < tot; ++i) add(fail[i], i);
dfs(root, -1);
for (int i = len - 1; i >= 1; i--) dp[i] = max(dp[i], dp[i + 1]);
for (int i = 1; i <= len; ++i) printf("%d
", dp[i]);
}
}sam;
int main()
{
cin.sync_with_stdio(0);
sam.clear();
string s; cin >> s;
for (int i = 0, len = s.length(); i < len; ++i)
sam.insert(s[i] - 'a');
sam.solve(s.length());
}