zoukankan      html  css  js  c++  java
  • 【6】随机阵的正态分布

    【6】随机阵的正态分布

    对于一个矩阵

    [X= left( egin{array} {cccc} x_{11} & x_{12} & dots & x_{1p}\ x_{21} & x_{22} & dots & x_{2p}\ vdots & vdots & & vdots \ x_{n1} & x_{n2} & dots & x_{np}\ end{array} ight)= left( egin{array} {c} X'_{(1)}\ X'_{(2)}\ vdots\ X'_{(n)} end{array} ight)=(mathcal{X}_1,mathcal{X}_2dots,mathcal{X}_p) ]

    (X_{(i)}=(x_{i1},dots,x_{ip})'),((i=1,dots,n))为来自(p)元正态总体 (N_p(mu,Sigma)) 的独立同分布随机样本,记随机阵(X=(x_{ij})_{n imes p}),利用拉直运算,((mathbb{I}::=p维单位向量))克罗内克积( Kronecker )运算,可知:

    [Vec(X')sim N_{np}(mathbb{I}_notimesmu,I_notimesSigma) ]

    事实上,

    [Vec(X')= left( egin{array}{c} X_{(1)}\ vdots\ X_{(n)} end{array} ight)=(x_{11},dots,x_{1p},dots,x_{n1},dots,x_{np})' ]

    为一个(np)维的长向量,其联合密度函数为:

    [egin{align} f(x_{(1)},dots,x_{(n)}) =&prod_{i=1}^nfrac1{(2pi)^{p/2}|Sigma|^{1/2}}exp{-frac12(x_{(i)}-mu)'Sigma^{-1}(x_{(i)}-mu)}\ =&frac1{(2pi)^{np/2}|Sigma|^{n/2}}exp{-frac12sum_{i=1}^n(x_{(i)}-mu)'Sigma^{-1}(x_{(i)}-mu)}\ =&frac1{(2pi)^{np/2}|Sigma|^{n/2}}expleft{-frac12left( egin{array}{c} x_{(1)}-mu\ vdots\ x_{(n)}-mu end{array} ight)' left( egin{array}{ccc} Sigma&cdots&O\ vdots&&vdots\ O&cdots&Sigma\ end{array} ight)^{-1} left( egin{array}{c} x_{(1)}-mu\ vdots\ x_{(n)}-mu end{array} ight) ight}\ =&frac1{(2pi)^{np/2}|Sigma|^{n/2}}expleft{-frac12left( egin{array}{c} X-mathbb{I}_notimesmu end{array} ight)' (I_notimesSigma)^{-1} (X-mathbb{I}_notimesmu) ight}\ end{align} ]

    于是,当随机阵(X)进行拉直以后,若满足(Vec(X')sim N_{np}(mathbb{I}_notimesmu,I_notimesSigma)),则称其服从矩阵正态分布,记作:(Xsim N_{n imes p}(M,I_notimesSigma))

    其中

    [M=left( egin{array} {ccc} mu_1 & dots & mu_p\ vdots & & vdots \ mu_1 & dots & mu_p\ end{array} ight) =mathbb{I}_nmu'::= left( egin{array} {c} 1\vdots\1 end{array} ight)_{p imes1} (mu_1,dots,mu_p) ]

    则有

    [Vec(M')=mathbb{I}_nmu=(mu_1,dots,mu_p,dots,mu_1,dots,mu_p)' ]

    于是

    [Vec(X')sim N_{np}(Vec(M'),I_notimesSigma)quadleftrightarrowsquad Xsim N_{n imes p}(M,I_notimesSigma) ]

    线性组合的性质
    • (Xsim N_{n imes p}(M,I_notimesSigma)),令(Z=A_{k imes n}XB_{q imes p}'+D_{k imes q}),则:

    [Zsim N_{k imes q}(AMB'+D,(AA')otimes(BSigma B')) ]

  • 相关阅读:
    第1章 初涉MySQL
    成绩转换
    【JSTL】--附加:c:import,c:url;c:param,c:redirect--drp217
    【JSTL】--JSTL表达式:c:forEach,varstatus/begin end/循环控制标签--drp215
    【JSTL】--JSTL表达式:c:forEach--drp215
    【JSTL】--JSTL表达式:c:set,c:if,c:choose,--drp214
    【JSTL】--c:out演示--drp213
    【JSTL】--测试EL表达式--drp212~
    【JSTL】--读取实体成员变量吗?--drp212
    【JSTL】--测试EL表达式--drp212
  • 原文地址:https://www.cnblogs.com/rrrrraulista/p/12346349.html
Copyright © 2011-2022 走看看