zoukankan      html  css  js  c++  java
  • 【10】极大似然估计量的性质

    【10】极大似然估计量的性质

    (定理1) 设(X_{(i)}(i=1,...,n)sim N_p(mu,Sigma),(n>p)),则((mu,Sigma))'s MLE is:

    [hat{mu}=overline{X}=frac1nsum_{i=1}^nX_{(i)}\ hatSigma=frac1nA=frac1nsum_{i=1}^n(X_{(i)}-overline{X})(X_{(i)}-overline{X})' ]

    (定理2) 若(overline{X},A)分别为(p)元正态总体(N_p(mu,Sigma))的样本均值向量,和样本离差阵,则:

    1. (overline{X}sim N_p(mu,frac1nSigma));
    2. (A=^dsum_{t=1}^{n-1}Z_tZ_t'),其中,(Z_1,...,Z_{n-1})独立同(N_p(0,Sigma))分布;
    3. (overline{X},A)相互独立;
    4. (P{A>0}=1Leftrightarrow n>p).

    讨论何时(A)为一个正定矩阵;

    • 一元的一些结论:

    if (X_1,...X_n) iid (N(mu,sigma^2))

    1. (overline{X}sim N(mu,frac{sigma^2}{n}));
    2. (frac{sum_{i-1}^n(X_i-overline{X})^2}{sigma^2}simchi^2(n-1));
    3. (overline{X})(s^2=frac1{n-1}sum_{i=1}^n(X-overline{X})^2)独立;

    证明:

    (Gamma)(n)正交阵(不同行内积为 0 , 同行内积为 1),具有以下形式:

    [Gamma= left[ egin{array}{ccc} gamma_{11}&dots&gamma_{1n}\ vdots&&vdots\ gamma_{(n-1),1}&dots&gamma_{(n-1),n}\ frac1{sqrt{n}}&dots&frac1{sqrt{n}} end{array} ight]=(gamma_{ij})_{n imes n} ]

    (X) 做线性变换 (Z=Gamma X) 即:

    [Z=left[ egin{array}{c} Z_1'\ vdots\ Z_n' end{array} ight]=Gamma left[ egin{array}{c} X_{(1)}'\ vdots\ X_{(n)}' end{array} ight]=Gamma X ]

    则:

    [egin{align} Z'=&X'Gamma'\\ (Z_1,...,Z_n)=&(X_{(1)},...,X_{(n)})Gamma'\ Z_t=(X_{(1)},...,X_{(n)})&left[ egin{array}{c} gamma_{t1}\ vdots\ gamma_{tn} end{array} ight],(t=1,...,n) end{align} ]

    (Z_t)(p)维随机向量,而且是(p)维正态 r.v. (X_{(1)}',...,X_{(n)}')的线性组合,故(Z_t)也是(p)正态随机向量。且:

    [E(Z_t)=E(sum_{i=1}^nr_{ti}X_{(i)})=sum_{i=1}^nr_{ti}E(X_{(i)})=musum_{i=1}^nr_{ti}= egin{cases} mucdot(frac1{sqrt{n}}sum_{i=1}^nr_{ti})cdotsqrt{n}&=0&当\,t eq n\,时,\ mucdot nfrac1{sqrt{n}}&=sqrt{n}mu&当\,t=n\,时\ end{cases} ]

    [egin{align} Cov(Z_{alpha},Z_{eta})=&E[(Z_{alpha}-E(Z_alpha))(Z_{eta}-E(Z_{eta}))']=sum_{i=1}^n(r_{alpha i}r_{eta i})Sigma= egin{cases} O&alpha eqeta,\ Sigma&alpha=eta end{cases} end{align} ]

    • (overline{X}sim N_p(mu,frac1nSigma));

    (Z_n=frac1{sqrt{n}}sum_{alpha=1}^nX_{(alpha)}=sqrt{n}overline{X}sim N_p(musqrt{n},Sigma))

    • (A=^dsum_{t=1}^{n-1}Z_tZ_t'),其中,(Z_1,...,Z_{n-1})独立同(N_p(0,Sigma))分布;

    (sum_{alpha=1}^nZ_alpha Z_alpha'=(Z_1,...,Z_n)left(egin{array}{c}Z_1'\vdots\Z_{n}'end{array} ight)=Z'Z=X'Gamma'cdotGamma X=sum_{alpha=1}^nX_alpha X_alpha')

    于是:

    [sum_{alpha=1}^{n-1}Z_alpha Z_alpha'=sum_{alpha=1}^nX_alpha X_alpha'-Z_{n}Z_{n}'=sum_{alpha=1}^nX_alpha X_alpha'-noverline{X}overline{X}'=A ]

    • (overline{X},A)相互独立;

    [A=g(sum_{t=1}^{n-1}Z_tZ_t')\ overline{X}=f(Z_n) ]

    (Z_i,Z_j)相互独立((i eq j))时,则(A、overline{X})也相互独立。

    • (P{A>0}=1Leftrightarrow n>p).

    (B=(Z_1,...,Z_{n-1})),记(A=BB'),因为(A=BB')(p imes(n-1))矩阵,显然(rank(A)=rank(B)),当(A)为正定矩阵时,(rank(A)=p),因此(rank(B)=p),故 ((n-1)geq p),即(n>p).

    (无偏性)

    [E(overline{X})=left(egin{array}{c} frac1nsum_{i=1}^nE(x_{i1})\ vdots\ frac1nsum_{i=1}^nE(x_{ip})\ end{array} ight)= left(egin{array}{c} mu_1\vdots\mu_p end{array} ight)=mu ]

    [E(A)=Eleft(sum_{i=1}^{n-1}Z_iZ_i' ight)=sum_{i=1}^{n-1}E(Z_iZ_i')=sum_{i=1}^{n-1}D(Z_i)=(n-1)Sigma eqSigma ]

    (hat{Sigma}=frac1nA)不是(Sigma)的无偏估计,应修正为:(S=frac1{n-1}A).

  • 相关阅读:
    uva 10129 play on words——yhx
    uva 10305 ordering tasks(超级烂题)——yhx
    uva 816 abbott's revenge ——yhx
    php 格式化数字 位数不足前面加0补足
    NetBeans-xdebug的安装
    php 文件file常用的操作
    pg 匹配中文字符
    隐藏 php apache 的版本号
    php redis扩展
    php 二维数组的排序
  • 原文地址:https://www.cnblogs.com/rrrrraulista/p/12546064.html
Copyright © 2011-2022 走看看