zoukankan      html  css  js  c++  java
  • LibreOJ β Round #2 D

    题链

     我们要维护这四种操作:

    1. 在数组 A的末尾添加一个数 x。

    2. 输出 ∑ai(l to r)

    3. 将数组 A 中的每个数 A xor 一个数。

    4. 将数组 A 从小到大排序。

    那么我们注意一件事,能很好的维护 XOR 操作的数据结构并不多:

       1.路权并查集(什么鬼)

       2.树状数组。

       3.trie tree

       4. 线性基

        。。。

      我们发现这道题 1,2,4显然不科学。

      我们要处理的询问只有3,那么我们只要求前缀和即可。

      我们考虑如何维护4操作:

       我们发现我们很难在严格的O(log N^2)或更少的时间维护这个操作,我们考虑摊还分析。(就像cf 896E一样)

       我们发现处理单个元素的时间复杂度应该在O(sqrt N)以内,但我并没有想到分块的做法,因为排序所带的log 很难去掉。

       我们用 trie 来解决:

         首先要保证每个元素应该进trie一次。我们认为每个元素进入trie后便是有序的。(XOR 操作的干扰下文将仔细的描述)

         那么没有进入trie的元素我们用前缀和统计:

           我们统计前缀元素在每一二进制位上出现几次,那么我们应该可以再O(log )复杂度内维护前缀和。

    void Int(int tot,int x){//统计前缀和,依次插入每个元素
        for (int j=0;j<31;j++,x>>=1) 
         sum[tot][j]=sum[tot-1][j]+(x&1);
    }
    for (int i=30;~i;i--) //假设我们已经统计出在XOR last 之前我们在每一位上1的个数,那么我们可以这样统计答案
       ans+=1ll*((last>>i)&1?x-anw[i]:anw[i])<<i;//X是前缀和的元素个数

     

     那么我们就解决了1,2,3操作(如果没有4的话)

      我们考虑4操作,之前讲了我们要让每个元素进trie一次,那么我们就很快的得出了在trie中的有序序列。

      那么我们在XOR操作以后怎么知道原来的顺序呢?

      我们统计在最后一次排序的时候,整个数组被哪个数 XOR 过了,统计顺序时XOR回去再做。

      我们整理一下:

         1操作: 我们得到一个数,XOR当前数组的懒标记,我们将其塞进前缀和数组里。

         2操作: 我们把懒标记再XOR 当前要亦或的数。

         3操作: 我们求前缀和:当 当前要求的末元素未进入trie时,我们用前缀和查询,如果在trie里,遍历trie上在 trie的懒标记下的最大值。

         4操作:我们把当前所有未进入trie的数压入trie,并更新trie的懒标记。

    #pragma GCC optimize("-O2")
    #include<bits/stdc++.h>
    #define getchar nc
    #define LL long long
    #define sight(c) ('0'<=c&&c<='9')
    #define deg printf
    #define dput puts
    #define dwln writeln
    #define dwl  
    #define N 200007
    #define db double 
    #define eho(x) for(int i=head[x];i;i=net[i])
    inline char nc(){
    static char buf[1000000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    inline void read(int &x){
        static char c;
        for (c=getchar();!sight(c);c=getchar());
        for (x=0;sight(c);c=getchar())x=x*10+c-48;
    }
    void write(LL x){if (x<10) {putchar('0'+x); return;} write(x/10); putchar('0'+x%10);}
    inline void writeln(LL x){ if (x<0) putchar('-'),x*=-1; write(x); putchar('
    '); }
    inline void writel(LL x){ if (x<0) putchar('-'),x*=-1; write(x); putchar(' '); }
    using namespace std;
    struct Node{int son[2],ch[31],val;}T[N<<5|1];
    int tot,Tot=1,last,lazy,n,sum[N][31],anw[31],to,x,a[N],root=1,m,op,l,r,tre_lazy;
    void Int(int tot,int x){
        for (int j=0;j<31;j++,x>>=1) 
         sum[tot][j]=sum[tot-1][j]+(x&1);
    }
    void ins(int x,int dep,int No){
        T[No].val++;
        for (int j=0,t=x;t;j++,t>>=1) T[No].ch[j]+=t&1;
        if (dep==-1) return;
        int w=(x>>dep)&1;
        if (!T[No].son[w]) T[No].son[w]=++Tot; 
        ins(x,dep-1,T[No].son[w]);
    }
    void find(int k,int dep,int No){
        if (!k) return;
        if (dep==-1) {
            for (int i=30;~i;i--) anw[i]+=min(k,T[No].ch[i]);
          return; }
        if ((tre_lazy>>dep)&1) swap(T[No].son[0],T[No].son[1]);
        if (T[T[No].son[0]].val<=k) {
            for (int i=30;~i;i--) //anw[i]+=((last>>i)&1)?T[T[No].son[0]].val-T[T[No].son[0]].ch[i]:T[T[No].son[0]].ch[i];
              anw[i]+=T[T[No].son[0]].ch[i];
            find(k-T[T[No].son[0]].val,dep-1,T[No].son[1]);
        } else find(k,dep-1,T[No].son[0]);
        if ((tre_lazy>>dep)&1) swap(T[No].son[0],T[No].son[1]);    
    }
    LL query(int x){
        if (x==0) return 0;
        memset(anw,0,sizeof anw);
        if (x>=to) for (int i=30;~i;i--) anw[i]=sum[x][i];
        else    find(x,30,root);
        LL ans=0;
        for (int i=30;~i;i--) ans+=1ll*((last>>i)&1?x-anw[i]:anw[i])<<i;
        return ans;
    }
    signed main() {
    //    freopen("d.in","r",stdin);
    //    freopen("d.out","w",stdout);
        read(n);
        for(int i=1;i<=n;i++) 
         {read(a[i]); Int(i,a[i]);} 
          tot=n;
        read(m);
        while (m--) {
          read(op); 
          switch (op) {
              case 1:  read(x); a[++tot]=x^last;Int(tot,a[tot]); break;
              case 2:  read(l); read(r);
                dwl(query(r)),dwl(r),
                dwl(query(l-1)),dwl(l-1),dwl(to),dwl(last),dwl(tre_lazy),
                writeln(query(r)-query(l-1)); break;
              case 3:  read(lazy);  last^=lazy; break;
              case 4:  
               tre_lazy=last;while (to^tot) ins(a[++to],30,root); break;
          }
        }
        return 0;
    }
  • 相关阅读:
    绝对路径和相对路径的问题
    get请求中的中文乱码问题的解决方法
    jsp中的另一种分页实现方法
    jsp中退出功能实现代码
    jsp中完整的分页显示和页面跳转功能实现的源代码
    jsp中未登录用户也可以浏览页面的功能实现代码
    date和calendar对象的转化,使用,以及插入数据库中的总结
    jsp中向数据库中插入当前时间的方法精确到秒
    硬盘方式安装 Windows 7
    HP笔记本中CQ4x系列,在XP下的未知设备与声卡设备驱动
  • 原文地址:https://www.cnblogs.com/rrsb/p/8330835.html
Copyright © 2011-2022 走看看