解决哈希冲突的三种方法(拉链法、开放地址法、再散列法) - 小猛同学的博客 - CSDN博客 https://blog.csdn.net/qq_32595453/article/details/80660676
2018年06月12日 10:16:57
上篇博客我们说到了,什么是哈希冲突,其实就是再采用哈希函数对输入域进行映射到哈希表的时候,因为哈希表的位桶的数目远小于输入域的关键字的个数,所以,对于输入域的关键字来说,很可能会产生这样一种情况,也就是,一个关键字会映射到同一个位桶中的情况,这种情况就就叫做哈希冲突,解决哈希冲突的有三种方案,一种叫做拉链法(也叫作链接法、链地址法,一个意思),另外三种分别为开发地址法和再散列法。
一、拉链法
上篇博文我们举的例子,HashMap,HashSet其实都是采用的拉链法来解决哈希冲突的,就是在每个位桶实现的时候,我们采用链表(jdk1.8之后采用链表+红黑树)的数据结构来去存取发生哈希冲突的输入域的关键字(也就是被哈希函数映射到同一个位桶上的关键字)。首先来看使用拉链法解决哈希冲突的几个操作:
①插入操作:在发生哈希冲突的时候,我们输入域的关键字去映射到位桶(实际上是实现位桶的这个数据结构,链表或者红黑树)中去的时候,我们先检查带插入元素x是否出现在表中,很明显,这个查找所用的次数不会超过装载因子(n/m:n为输入域的关键字个数,m为位桶的数目),它是个常数,所以插入操作的最坏时间复杂度为O(1)的。
②查询操作:和①一样,在发生哈希冲突的时候,我们去检索的时间复杂度不会超过装载因子,也就是检索数据的时间复杂度也是O(1)的
③删除操作:如果在拉链法中我们想要使用链表这种数据结构来实现位桶,那么这个链表一定是双向链表,因为在删除一个元素x的时候,需要更改x的前驱元素的next指针的属性,把x从链表中删除。这个操作的时间复杂度也是O(1)的。
拉链法的优点
与开放定址法相比,拉链法有如下几个优点:
①拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
②由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
③开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
④在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。
拉链法的缺点
指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。
使用例子:
HashMap
二、开发地址法
开放地址法有个非常关键的特征,就是所有输入的元素全部存放在哈希表里,也就是说,位桶的实现是不需要任何的链表来实现的,换句话说,也就是这个哈希表的装载因子不会超过1。它的实现是在插入一个元素的时候,先通过哈希函数进行判断,若是发生哈希冲突,就以当前地址为基准,根据再寻址的方法(探查序列),去寻找下一个地址,若发生冲突再去寻找,直至找到一个为空的地址为止。所以这种方法又称为再散列法。
有几种常用的探查序列的方法:
①线性探查
dii=1,2,3,…,m-1;这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
(使用例子:ThreadLocal里面的ThreadLocalMap)
②二次探查
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2 );这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
③ 伪随机探测
di=伪随机数序列;具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),生成一个位随机序列,并给定一个随机数做起点,每次去加上这个伪随机数++就可以了。
三、再散列法
再散列法其实很简单,就是再使用哈希函数去散列一个输入的时候,输出是同一个位置就再次散列,直至不发生冲突位置
缺点:每次冲突都要重新散列,计算时间增加。
---------------------
解决hash冲突的三个方法 - 且听风吟-wuchao - 博客园 https://www.cnblogs.com/wuchaodzxx/p/7396599.html
解决hash冲突的三个方法
通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。下面以创建哈希表为例,说明解决冲突的方法。常用的解决冲突方法有以下四种:
开放定址法
这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:
Hi=(H(key)+di)% m i=1,2,…,n
其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
线性探测再散列
dii=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
二次探测再散列
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2 )
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
伪随机探测再散列
di=伪随机数序列。
具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。
例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。
如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元。
如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元。
如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元。
再哈希法
这种方法是同时构造多个不同的哈希函数:
Hi=RH1(key) i=1,2,…,k
当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。
链地址法
这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表。