zoukankan      html  css  js  c++  java
  • @functools.lru_cache()

    django.views.debug.get_default_exception_reporter_filter

    @functools.lru_cache()
    def get_default_exception_reporter_filter():
    # Instantiate the default filter for the first time and cache it.
    return import_string(settings.DEFAULT_EXCEPTION_REPORTER_FILTER)()
    """functools.py - Tools for working with functions and callable objects
    """
    # Python module wrapper for _functools C module
    # to allow utilities written in Python to be added
    # to the functools module.
    # Written by Nick Coghlan <ncoghlan at gmail.com>,
    # Raymond Hettinger <python at rcn.com>,
    # and Łukasz Langa <lukasz at langa.pl>.
    # Copyright (C) 2006-2013 Python Software Foundation.
    # See C source code for _functools credits/copyright

    __all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
    'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce', 'partial',
    'partialmethod', 'singledispatch']

    try:
    from _functools import reduce
    except ImportError:
    pass
    from abc import get_cache_token
    from collections import namedtuple
    # import types, weakref # Deferred to single_dispatch()
    from reprlib import recursive_repr
    from _thread import RLock


    ################################################################################
    ### update_wrapper() and wraps() decorator
    ################################################################################

    # update_wrapper() and wraps() are tools to help write
    # wrapper functions that can handle naive introspection

    WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
    '__annotations__')
    WRAPPER_UPDATES = ('__dict__',)
    def update_wrapper(wrapper,
    wrapped,
    assigned = WRAPPER_ASSIGNMENTS,
    updated = WRAPPER_UPDATES):
    """Update a wrapper function to look like the wrapped function

    wrapper is the function to be updated
    wrapped is the original function
    assigned is a tuple naming the attributes assigned directly
    from the wrapped function to the wrapper function (defaults to
    functools.WRAPPER_ASSIGNMENTS)
    updated is a tuple naming the attributes of the wrapper that
    are updated with the corresponding attribute from the wrapped
    function (defaults to functools.WRAPPER_UPDATES)
    """
    for attr in assigned:
    try:
    value = getattr(wrapped, attr)
    except AttributeError:
    pass
    else:
    setattr(wrapper, attr, value)
    for attr in updated:
    getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
    # Issue #17482: set __wrapped__ last so we don't inadvertently copy it
    # from the wrapped function when updating __dict__
    wrapper.__wrapped__ = wrapped
    # Return the wrapper so this can be used as a decorator via partial()
    return wrapper

    def wraps(wrapped,
    assigned = WRAPPER_ASSIGNMENTS,
    updated = WRAPPER_UPDATES):
    """Decorator factory to apply update_wrapper() to a wrapper function

    Returns a decorator that invokes update_wrapper() with the decorated
    function as the wrapper argument and the arguments to wraps() as the
    remaining arguments. Default arguments are as for update_wrapper().
    This is a convenience function to simplify applying partial() to
    update_wrapper().
    """
    return partial(update_wrapper, wrapped=wrapped,
    assigned=assigned, updated=updated)


    ################################################################################
    ### total_ordering class decorator
    ################################################################################

    # The total ordering functions all invoke the root magic method directly
    # rather than using the corresponding operator. This avoids possible
    # infinite recursion that could occur when the operator dispatch logic
    # detects a NotImplemented result and then calls a reflected method.

    def _gt_from_lt(self, other, NotImplemented=NotImplemented):
    'Return a > b. Computed by @total_ordering from (not a < b) and (a != b).'
    op_result = self.__lt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result and self != other

    def _le_from_lt(self, other, NotImplemented=NotImplemented):
    'Return a <= b. Computed by @total_ordering from (a < b) or (a == b).'
    op_result = self.__lt__(other)
    return op_result or self == other

    def _ge_from_lt(self, other, NotImplemented=NotImplemented):
    'Return a >= b. Computed by @total_ordering from (not a < b).'
    op_result = self.__lt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    def _ge_from_le(self, other, NotImplemented=NotImplemented):
    'Return a >= b. Computed by @total_ordering from (not a <= b) or (a == b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result or self == other

    def _lt_from_le(self, other, NotImplemented=NotImplemented):
    'Return a < b. Computed by @total_ordering from (a <= b) and (a != b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
    return op_result
    return op_result and self != other

    def _gt_from_le(self, other, NotImplemented=NotImplemented):
    'Return a > b. Computed by @total_ordering from (not a <= b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    def _lt_from_gt(self, other, NotImplemented=NotImplemented):
    'Return a < b. Computed by @total_ordering from (not a > b) and (a != b).'
    op_result = self.__gt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result and self != other

    def _ge_from_gt(self, other, NotImplemented=NotImplemented):
    'Return a >= b. Computed by @total_ordering from (a > b) or (a == b).'
    op_result = self.__gt__(other)
    return op_result or self == other

    def _le_from_gt(self, other, NotImplemented=NotImplemented):
    'Return a <= b. Computed by @total_ordering from (not a > b).'
    op_result = self.__gt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    def _le_from_ge(self, other, NotImplemented=NotImplemented):
    'Return a <= b. Computed by @total_ordering from (not a >= b) or (a == b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result or self == other

    def _gt_from_ge(self, other, NotImplemented=NotImplemented):
    'Return a > b. Computed by @total_ordering from (a >= b) and (a != b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
    return op_result
    return op_result and self != other

    def _lt_from_ge(self, other, NotImplemented=NotImplemented):
    'Return a < b. Computed by @total_ordering from (not a >= b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    _convert = {
    '__lt__': [('__gt__', _gt_from_lt),
    ('__le__', _le_from_lt),
    ('__ge__', _ge_from_lt)],
    '__le__': [('__ge__', _ge_from_le),
    ('__lt__', _lt_from_le),
    ('__gt__', _gt_from_le)],
    '__gt__': [('__lt__', _lt_from_gt),
    ('__ge__', _ge_from_gt),
    ('__le__', _le_from_gt)],
    '__ge__': [('__le__', _le_from_ge),
    ('__gt__', _gt_from_ge),
    ('__lt__', _lt_from_ge)]
    }

    def total_ordering(cls):
    """Class decorator that fills in missing ordering methods"""
    # Find user-defined comparisons (not those inherited from object).
    roots = {op for op in _convert if getattr(cls, op, None) is not getattr(object, op, None)}
    if not roots:
    raise ValueError('must define at least one ordering operation: < > <= >=')
    root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
    for opname, opfunc in _convert[root]:
    if opname not in roots:
    opfunc.__name__ = opname
    setattr(cls, opname, opfunc)
    return cls


    ################################################################################
    ### cmp_to_key() function converter
    ################################################################################

    def cmp_to_key(mycmp):
    """Convert a cmp= function into a key= function"""
    class K(object):
    __slots__ = ['obj']
    def __init__(self, obj):
    self.obj = obj
    def __lt__(self, other):
    return mycmp(self.obj, other.obj) < 0
    def __gt__(self, other):
    return mycmp(self.obj, other.obj) > 0
    def __eq__(self, other):
    return mycmp(self.obj, other.obj) == 0
    def __le__(self, other):
    return mycmp(self.obj, other.obj) <= 0
    def __ge__(self, other):
    return mycmp(self.obj, other.obj) >= 0
    __hash__ = None
    return K

    try:
    from _functools import cmp_to_key
    except ImportError:
    pass


    ################################################################################
    ### partial() argument application
    ################################################################################

    # Purely functional, no descriptor behaviour
    class partial:
    """New function with partial application of the given arguments
    and keywords.
    """

    __slots__ = "func", "args", "keywords", "__dict__", "__weakref__"

    def __new__(*args, **keywords):
    if not args:
    raise TypeError("descriptor '__new__' of partial needs an argument")
    if len(args) < 2:
    raise TypeError("type 'partial' takes at least one argument")
    cls, func, *args = args
    if not callable(func):
    raise TypeError("the first argument must be callable")
    args = tuple(args)

    if hasattr(func, "func"):
    args = func.args + args
    tmpkw = func.keywords.copy()
    tmpkw.update(keywords)
    keywords = tmpkw
    del tmpkw
    func = func.func

    self = super(partial, cls).__new__(cls)

    self.func = func
    self.args = args
    self.keywords = keywords
    return self

    def __call__(*args, **keywords):
    if not args:
    raise TypeError("descriptor '__call__' of partial needs an argument")
    self, *args = args
    newkeywords = self.keywords.copy()
    newkeywords.update(keywords)
    return self.func(*self.args, *args, **newkeywords)

    @recursive_repr()
    def __repr__(self):
    qualname = type(self).__qualname__
    args = [repr(self.func)]
    args.extend(repr(x) for x in self.args)
    args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
    if type(self).__module__ == "functools":
    return f"functools.{qualname}({', '.join(args)})"
    return f"{qualname}({', '.join(args)})"

    def __reduce__(self):
    return type(self), (self.func,), (self.func, self.args,
    self.keywords or None, self.__dict__ or None)

    def __setstate__(self, state):
    if not isinstance(state, tuple):
    raise TypeError("argument to __setstate__ must be a tuple")
    if len(state) != 4:
    raise TypeError(f"expected 4 items in state, got {len(state)}")
    func, args, kwds, namespace = state
    if (not callable(func) or not isinstance(args, tuple) or
    (kwds is not None and not isinstance(kwds, dict)) or
    (namespace is not None and not isinstance(namespace, dict))):
    raise TypeError("invalid partial state")

    args = tuple(args) # just in case it's a subclass
    if kwds is None:
    kwds = {}
    elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
    kwds = dict(kwds)
    if namespace is None:
    namespace = {}

    self.__dict__ = namespace
    self.func = func
    self.args = args
    self.keywords = kwds

    try:
    from _functools import partial
    except ImportError:
    pass

    # Descriptor version
    class partialmethod(object):
    """Method descriptor with partial application of the given arguments
    and keywords.

    Supports wrapping existing descriptors and handles non-descriptor
    callables as instance methods.
    """

    def __init__(*args, **keywords):
    if len(args) >= 2:
    self, func, *args = args
    elif not args:
    raise TypeError("descriptor '__init__' of partialmethod "
    "needs an argument")
    elif 'func' in keywords:
    func = keywords.pop('func')
    self, *args = args
    else:
    raise TypeError("type 'partialmethod' takes at least one argument, "
    "got %d" % (len(args)-1))
    args = tuple(args)

    if not callable(func) and not hasattr(func, "__get__"):
    raise TypeError("{!r} is not callable or a descriptor"
    .format(func))

    # func could be a descriptor like classmethod which isn't callable,
    # so we can't inherit from partial (it verifies func is callable)
    if isinstance(func, partialmethod):
    # flattening is mandatory in order to place cls/self before all
    # other arguments
    # it's also more efficient since only one function will be called
    self.func = func.func
    self.args = func.args + args
    self.keywords = func.keywords.copy()
    self.keywords.update(keywords)
    else:
    self.func = func
    self.args = args
    self.keywords = keywords

    def __repr__(self):
    args = ", ".join(map(repr, self.args))
    keywords = ", ".join("{}={!r}".format(k, v)
    for k, v in self.keywords.items())
    format_string = "{module}.{cls}({func}, {args}, {keywords})"
    return format_string.format(module=self.__class__.__module__,
    cls=self.__class__.__qualname__,
    func=self.func,
    args=args,
    keywords=keywords)

    def _make_unbound_method(self):
    def _method(*args, **keywords):
    call_keywords = self.keywords.copy()
    call_keywords.update(keywords)
    cls_or_self, *rest = args
    call_args = (cls_or_self,) + self.args + tuple(rest)
    return self.func(*call_args, **call_keywords)
    _method.__isabstractmethod__ = self.__isabstractmethod__
    _method._partialmethod = self
    return _method

    def __get__(self, obj, cls):
    get = getattr(self.func, "__get__", None)
    result = None
    if get is not None:
    new_func = get(obj, cls)
    if new_func is not self.func:
    # Assume __get__ returning something new indicates the
    # creation of an appropriate callable
    result = partial(new_func, *self.args, **self.keywords)
    try:
    result.__self__ = new_func.__self__
    except AttributeError:
    pass
    if result is None:
    # If the underlying descriptor didn't do anything, treat this
    # like an instance method
    result = self._make_unbound_method().__get__(obj, cls)
    return result

    @property
    def __isabstractmethod__(self):
    return getattr(self.func, "__isabstractmethod__", False)


    ################################################################################
    ### LRU Cache function decorator
    ################################################################################

    _CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])

    class _HashedSeq(list):
    """ This class guarantees that hash() will be called no more than once
    per element. This is important because the lru_cache() will hash
    the key multiple times on a cache miss.

    """

    __slots__ = 'hashvalue'

    def __init__(self, tup, hash=hash):
    self[:] = tup
    self.hashvalue = hash(tup)

    def __hash__(self):
    return self.hashvalue

    def _make_key(args, kwds, typed,
    kwd_mark = (object(),),
    fasttypes = {int, str},
    tuple=tuple, type=type, len=len):
    """Make a cache key from optionally typed positional and keyword arguments

    The key is constructed in a way that is flat as possible rather than
    as a nested structure that would take more memory.

    If there is only a single argument and its data type is known to cache
    its hash value, then that argument is returned without a wrapper. This
    saves space and improves lookup speed.

    """
    # All of code below relies on kwds preserving the order input by the user.
    # Formerly, we sorted() the kwds before looping. The new way is *much*
    # faster; however, it means that f(x=1, y=2) will now be treated as a
    # distinct call from f(y=2, x=1) which will be cached separately.
    key = args
    if kwds:
    key += kwd_mark
    for item in kwds.items():
    key += item
    if typed:
    key += tuple(type(v) for v in args)
    if kwds:
    key += tuple(type(v) for v in kwds.values())
    elif len(key) == 1 and type(key[0]) in fasttypes:
    return key[0]
    return _HashedSeq(key)

    def lru_cache(maxsize=128, typed=False):
    """Least-recently-used cache decorator.

    If *maxsize* is set to None, the LRU features are disabled and the cache
    can grow without bound.

    If *typed* is True, arguments of different types will be cached separately.
    For example, f(3.0) and f(3) will be treated as distinct calls with
    distinct results.

    Arguments to the cached function must be hashable.

    View the cache statistics named tuple (hits, misses, maxsize, currsize)
    with f.cache_info(). Clear the cache and statistics with f.cache_clear().
    Access the underlying function with f.__wrapped__.

    See: http://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)

    """

    # Users should only access the lru_cache through its public API:
    # cache_info, cache_clear, and f.__wrapped__
    # The internals of the lru_cache are encapsulated for thread safety and
    # to allow the implementation to change (including a possible C version).

    # Early detection of an erroneous call to @lru_cache without any arguments
    # resulting in the inner function being passed to maxsize instead of an
    # integer or None. Negative maxsize is treated as 0.
    if isinstance(maxsize, int):
    if maxsize < 0:
    maxsize = 0
    elif maxsize is not None:
    raise TypeError('Expected maxsize to be an integer or None')

    def decorating_function(user_function):
    wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
    return update_wrapper(wrapper, user_function)

    return decorating_function

    def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
    # Constants shared by all lru cache instances:
    sentinel = object() # unique object used to signal cache misses
    make_key = _make_key # build a key from the function arguments
    PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields

    cache = {}
    hits = misses = 0
    full = False
    cache_get = cache.get # bound method to lookup a key or return None
    cache_len = cache.__len__ # get cache size without calling len()
    lock = RLock() # because linkedlist updates aren't threadsafe
    root = [] # root of the circular doubly linked list
    root[:] = [root, root, None, None] # initialize by pointing to self

    if maxsize == 0:

    def wrapper(*args, **kwds):
    # No caching -- just a statistics update
    nonlocal misses
    misses += 1
    result = user_function(*args, **kwds)
    return result

    elif maxsize is None:

    def wrapper(*args, **kwds):
    # Simple caching without ordering or size limit
    nonlocal hits, misses
    key = make_key(args, kwds, typed)
    result = cache_get(key, sentinel)
    if result is not sentinel:
    hits += 1
    return result
    misses += 1
    result = user_function(*args, **kwds)
    cache[key] = result
    return result

    else:

    def wrapper(*args, **kwds):
    # Size limited caching that tracks accesses by recency
    nonlocal root, hits, misses, full
    key = make_key(args, kwds, typed)
    with lock:
    link = cache_get(key)
    if link is not None:
    # Move the link to the front of the circular queue
    link_prev, link_next, _key, result = link
    link_prev[NEXT] = link_next
    link_next[PREV] = link_prev
    last = root[PREV]
    last[NEXT] = root[PREV] = link
    link[PREV] = last
    link[NEXT] = root
    hits += 1
    return result
    misses += 1
    result = user_function(*args, **kwds)
    with lock:
    if key in cache:
    # Getting here means that this same key was added to the
    # cache while the lock was released. Since the link
    # update is already done, we need only return the
    # computed result and update the count of misses.
    pass
    elif full:
    # Use the old root to store the new key and result.
    oldroot = root
    oldroot[KEY] = key
    oldroot[RESULT] = result
    # Empty the oldest link and make it the new root.
    # Keep a reference to the old key and old result to
    # prevent their ref counts from going to zero during the
    # update. That will prevent potentially arbitrary object
    # clean-up code (i.e. __del__) from running while we're
    # still adjusting the links.
    root = oldroot[NEXT]
    oldkey = root[KEY]
    oldresult = root[RESULT]
    root[KEY] = root[RESULT] = None
    # Now update the cache dictionary.
    del cache[oldkey]
    # Save the potentially reentrant cache[key] assignment
    # for last, after the root and links have been put in
    # a consistent state.
    cache[key] = oldroot
    else:
    # Put result in a new link at the front of the queue.
    last = root[PREV]
    link = [last, root, key, result]
    last[NEXT] = root[PREV] = cache[key] = link
    # Use the cache_len bound method instead of the len() function
    # which could potentially be wrapped in an lru_cache itself.
    full = (cache_len() >= maxsize)
    return result

    def cache_info():
    """Report cache statistics"""
    with lock:
    return _CacheInfo(hits, misses, maxsize, cache_len())

    def cache_clear():
    """Clear the cache and cache statistics"""
    nonlocal hits, misses, full
    with lock:
    cache.clear()
    root[:] = [root, root, None, None]
    hits = misses = 0
    full = False

    wrapper.cache_info = cache_info
    wrapper.cache_clear = cache_clear
    return wrapper

    try:
    from _functools import _lru_cache_wrapper
    except ImportError:
    pass


    ################################################################################
    ### singledispatch() - single-dispatch generic function decorator
    ################################################################################

    def _c3_merge(sequences):
    """Merges MROs in *sequences* to a single MRO using the C3 algorithm.

    Adapted from http://www.python.org/download/releases/2.3/mro/.

    """
    result = []
    while True:
    sequences = [s for s in sequences if s] # purge empty sequences
    if not sequences:
    return result
    for s1 in sequences: # find merge candidates among seq heads
    candidate = s1[0]
    for s2 in sequences:
    if candidate in s2[1:]:
    candidate = None
    break # reject the current head, it appears later
    else:
    break
    if candidate is None:
    raise RuntimeError("Inconsistent hierarchy")
    result.append(candidate)
    # remove the chosen candidate
    for seq in sequences:
    if seq[0] == candidate:
    del seq[0]

    def _c3_mro(cls, abcs=None):
    """Computes the method resolution order using extended C3 linearization.

    If no *abcs* are given, the algorithm works exactly like the built-in C3
    linearization used for method resolution.

    If given, *abcs* is a list of abstract base classes that should be inserted
    into the resulting MRO. Unrelated ABCs are ignored and don't end up in the
    result. The algorithm inserts ABCs where their functionality is introduced,
    i.e. issubclass(cls, abc) returns True for the class itself but returns
    False for all its direct base classes. Implicit ABCs for a given class
    (either registered or inferred from the presence of a special method like
    __len__) are inserted directly after the last ABC explicitly listed in the
    MRO of said class. If two implicit ABCs end up next to each other in the
    resulting MRO, their ordering depends on the order of types in *abcs*.

    """
    for i, base in enumerate(reversed(cls.__bases__)):
    if hasattr(base, '__abstractmethods__'):
    boundary = len(cls.__bases__) - i
    break # Bases up to the last explicit ABC are considered first.
    else:
    boundary = 0
    abcs = list(abcs) if abcs else []
    explicit_bases = list(cls.__bases__[:boundary])
    abstract_bases = []
    other_bases = list(cls.__bases__[boundary:])
    for base in abcs:
    if issubclass(cls, base) and not any(
    issubclass(b, base) for b in cls.__bases__
    ):
    # If *cls* is the class that introduces behaviour described by
    # an ABC *base*, insert said ABC to its MRO.
    abstract_bases.append(base)
    for base in abstract_bases:
    abcs.remove(base)
    explicit_c3_mros = [_c3_mro(base, abcs=abcs) for base in explicit_bases]
    abstract_c3_mros = [_c3_mro(base, abcs=abcs) for base in abstract_bases]
    other_c3_mros = [_c3_mro(base, abcs=abcs) for base in other_bases]
    return _c3_merge(
    [[cls]] +
    explicit_c3_mros + abstract_c3_mros + other_c3_mros +
    [explicit_bases] + [abstract_bases] + [other_bases]
    )

    def _compose_mro(cls, types):
    """Calculates the method resolution order for a given class *cls*.

    Includes relevant abstract base classes (with their respective bases) from
    the *types* iterable. Uses a modified C3 linearization algorithm.

    """
    bases = set(cls.__mro__)
    # Remove entries which are already present in the __mro__ or unrelated.
    def is_related(typ):
    return (typ not in bases and hasattr(typ, '__mro__')
    and issubclass(cls, typ))
    types = [n for n in types if is_related(n)]
    # Remove entries which are strict bases of other entries (they will end up
    # in the MRO anyway.
    def is_strict_base(typ):
    for other in types:
    if typ != other and typ in other.__mro__:
    return True
    return False
    types = [n for n in types if not is_strict_base(n)]
    # Subclasses of the ABCs in *types* which are also implemented by
    # *cls* can be used to stabilize ABC ordering.
    type_set = set(types)
    mro = []
    for typ in types:
    found = []
    for sub in typ.__subclasses__():
    if sub not in bases and issubclass(cls, sub):
    found.append([s for s in sub.__mro__ if s in type_set])
    if not found:
    mro.append(typ)
    continue
    # Favor subclasses with the biggest number of useful bases
    found.sort(key=len, reverse=True)
    for sub in found:
    for subcls in sub:
    if subcls not in mro:
    mro.append(subcls)
    return _c3_mro(cls, abcs=mro)

    def _find_impl(cls, registry):
    """Returns the best matching implementation from *registry* for type *cls*.

    Where there is no registered implementation for a specific type, its method
    resolution order is used to find a more generic implementation.

    Note: if *registry* does not contain an implementation for the base
    *object* type, this function may return None.

    """
    mro = _compose_mro(cls, registry.keys())
    match = None
    for t in mro:
    if match is not None:
    # If *match* is an implicit ABC but there is another unrelated,
    # equally matching implicit ABC, refuse the temptation to guess.
    if (t in registry and t not in cls.__mro__
    and match not in cls.__mro__
    and not issubclass(match, t)):
    raise RuntimeError("Ambiguous dispatch: {} or {}".format(
    match, t))
    break
    if t in registry:
    match = t
    return registry.get(match)

    def singledispatch(func):
    """Single-dispatch generic function decorator.

    Transforms a function into a generic function, which can have different
    behaviours depending upon the type of its first argument. The decorated
    function acts as the default implementation, and additional
    implementations can be registered using the register() attribute of the
    generic function.
    """
    # There are many programs that use functools without singledispatch, so we
    # trade-off making singledispatch marginally slower for the benefit of
    # making start-up of such applications slightly faster.
    import types, weakref

    registry = {}
    dispatch_cache = weakref.WeakKeyDictionary()
    cache_token = None

    def dispatch(cls):
    """generic_func.dispatch(cls) -> <function implementation>

    Runs the dispatch algorithm to return the best available implementation
    for the given *cls* registered on *generic_func*.

    """
    nonlocal cache_token
    if cache_token is not None:
    current_token = get_cache_token()
    if cache_token != current_token:
    dispatch_cache.clear()
    cache_token = current_token
    try:
    impl = dispatch_cache[cls]
    except KeyError:
    try:
    impl = registry[cls]
    except KeyError:
    impl = _find_impl(cls, registry)
    dispatch_cache[cls] = impl
    return impl

    def register(cls, func=None):
    """generic_func.register(cls, func) -> func

    Registers a new implementation for the given *cls* on a *generic_func*.

    """
    nonlocal cache_token
    if func is None:
    if isinstance(cls, type):
    return lambda f: register(cls, f)
    ann = getattr(cls, '__annotations__', {})
    if not ann:
    raise TypeError(
    f"Invalid first argument to `register()`: {cls!r}. "
    f"Use either `@register(some_class)` or plain `@register` "
    f"on an annotated function."
    )
    func = cls

    # only import typing if annotation parsing is necessary
    from typing import get_type_hints
    argname, cls = next(iter(get_type_hints(func).items()))
    assert isinstance(cls, type), (
    f"Invalid annotation for {argname!r}. {cls!r} is not a class."
    )
    registry[cls] = func
    if cache_token is None and hasattr(cls, '__abstractmethods__'):
    cache_token = get_cache_token()
    dispatch_cache.clear()
    return func

    def wrapper(*args, **kw):
    if not args:
    raise TypeError(f'{funcname} requires at least '
    '1 positional argument')

    return dispatch(args[0].__class__)(*args, **kw)

    funcname = getattr(func, '__name__', 'singledispatch function')
    registry[object] = func
    wrapper.register = register
    wrapper.dispatch = dispatch
    wrapper.registry = types.MappingProxyType(registry)
    wrapper._clear_cache = dispatch_cache.clear
    update_wrapper(wrapper, func)
    return wrapper
    """functools.py - Tools for working with functions and callable objects
    """
    # Python module wrapper for _functools C module
    # to allow utilities written in Python to be added
    # to the functools module.
    # Written by Nick Coghlan <ncoghlan at gmail.com>,
    # Raymond Hettinger <python at rcn.com>,
    # and Łukasz Langa <lukasz at langa.pl>.
    # Copyright (C) 2006-2013 Python Software Foundation.
    # See C source code for _functools credits/copyright

    __all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
    'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce', 'partial',
    'partialmethod', 'singledispatch']

    try:
    from _functools import reduce
    except ImportError:
    pass
    from abc import get_cache_token
    from collections import namedtuple
    # import types, weakref # Deferred to single_dispatch()
    from reprlib import recursive_repr
    from _thread import RLock


    ################################################################################
    ### update_wrapper() and wraps() decorator
    ################################################################################

    # update_wrapper() and wraps() are tools to help write
    # wrapper functions that can handle naive introspection

    WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
    '__annotations__')
    WRAPPER_UPDATES = ('__dict__',)
    def update_wrapper(wrapper,
    wrapped,
    assigned = WRAPPER_ASSIGNMENTS,
    updated = WRAPPER_UPDATES):
    """Update a wrapper function to look like the wrapped function

    wrapper is the function to be updated
    wrapped is the original function
    assigned is a tuple naming the attributes assigned directly
    from the wrapped function to the wrapper function (defaults to
    functools.WRAPPER_ASSIGNMENTS)
    updated is a tuple naming the attributes of the wrapper that
    are updated with the corresponding attribute from the wrapped
    function (defaults to functools.WRAPPER_UPDATES)
    """
    for attr in assigned:
    try:
    value = getattr(wrapped, attr)
    except AttributeError:
    pass
    else:
    setattr(wrapper, attr, value)
    for attr in updated:
    getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
    # Issue #17482: set __wrapped__ last so we don't inadvertently copy it
    # from the wrapped function when updating __dict__
    wrapper.__wrapped__ = wrapped
    # Return the wrapper so this can be used as a decorator via partial()
    return wrapper

    def wraps(wrapped,
    assigned = WRAPPER_ASSIGNMENTS,
    updated = WRAPPER_UPDATES):
    """Decorator factory to apply update_wrapper() to a wrapper function

    Returns a decorator that invokes update_wrapper() with the decorated
    function as the wrapper argument and the arguments to wraps() as the
    remaining arguments. Default arguments are as for update_wrapper().
    This is a convenience function to simplify applying partial() to
    update_wrapper().
    """
    return partial(update_wrapper, wrapped=wrapped,
    assigned=assigned, updated=updated)


    ################################################################################
    ### total_ordering class decorator
    ################################################################################

    # The total ordering functions all invoke the root magic method directly
    # rather than using the corresponding operator. This avoids possible
    # infinite recursion that could occur when the operator dispatch logic
    # detects a NotImplemented result and then calls a reflected method.

    def _gt_from_lt(self, other, NotImplemented=NotImplemented):
    'Return a > b. Computed by @total_ordering from (not a < b) and (a != b).'
    op_result = self.__lt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result and self != other

    def _le_from_lt(self, other, NotImplemented=NotImplemented):
    'Return a <= b. Computed by @total_ordering from (a < b) or (a == b).'
    op_result = self.__lt__(other)
    return op_result or self == other

    def _ge_from_lt(self, other, NotImplemented=NotImplemented):
    'Return a >= b. Computed by @total_ordering from (not a < b).'
    op_result = self.__lt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    def _ge_from_le(self, other, NotImplemented=NotImplemented):
    'Return a >= b. Computed by @total_ordering from (not a <= b) or (a == b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result or self == other

    def _lt_from_le(self, other, NotImplemented=NotImplemented):
    'Return a < b. Computed by @total_ordering from (a <= b) and (a != b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
    return op_result
    return op_result and self != other

    def _gt_from_le(self, other, NotImplemented=NotImplemented):
    'Return a > b. Computed by @total_ordering from (not a <= b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    def _lt_from_gt(self, other, NotImplemented=NotImplemented):
    'Return a < b. Computed by @total_ordering from (not a > b) and (a != b).'
    op_result = self.__gt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result and self != other

    def _ge_from_gt(self, other, NotImplemented=NotImplemented):
    'Return a >= b. Computed by @total_ordering from (a > b) or (a == b).'
    op_result = self.__gt__(other)
    return op_result or self == other

    def _le_from_gt(self, other, NotImplemented=NotImplemented):
    'Return a <= b. Computed by @total_ordering from (not a > b).'
    op_result = self.__gt__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    def _le_from_ge(self, other, NotImplemented=NotImplemented):
    'Return a <= b. Computed by @total_ordering from (not a >= b) or (a == b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result or self == other

    def _gt_from_ge(self, other, NotImplemented=NotImplemented):
    'Return a > b. Computed by @total_ordering from (a >= b) and (a != b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
    return op_result
    return op_result and self != other

    def _lt_from_ge(self, other, NotImplemented=NotImplemented):
    'Return a < b. Computed by @total_ordering from (not a >= b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
    return op_result
    return not op_result

    _convert = {
    '__lt__': [('__gt__', _gt_from_lt),
    ('__le__', _le_from_lt),
    ('__ge__', _ge_from_lt)],
    '__le__': [('__ge__', _ge_from_le),
    ('__lt__', _lt_from_le),
    ('__gt__', _gt_from_le)],
    '__gt__': [('__lt__', _lt_from_gt),
    ('__ge__', _ge_from_gt),
    ('__le__', _le_from_gt)],
    '__ge__': [('__le__', _le_from_ge),
    ('__gt__', _gt_from_ge),
    ('__lt__', _lt_from_ge)]
    }

    def total_ordering(cls):
    """Class decorator that fills in missing ordering methods"""
    # Find user-defined comparisons (not those inherited from object).
    roots = {op for op in _convert if getattr(cls, op, None) is not getattr(object, op, None)}
    if not roots:
    raise ValueError('must define at least one ordering operation: < > <= >=')
    root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
    for opname, opfunc in _convert[root]:
    if opname not in roots:
    opfunc.__name__ = opname
    setattr(cls, opname, opfunc)
    return cls


    ################################################################################
    ### cmp_to_key() function converter
    ################################################################################

    def cmp_to_key(mycmp):
    """Convert a cmp= function into a key= function"""
    class K(object):
    __slots__ = ['obj']
    def __init__(self, obj):
    self.obj = obj
    def __lt__(self, other):
    return mycmp(self.obj, other.obj) < 0
    def __gt__(self, other):
    return mycmp(self.obj, other.obj) > 0
    def __eq__(self, other):
    return mycmp(self.obj, other.obj) == 0
    def __le__(self, other):
    return mycmp(self.obj, other.obj) <= 0
    def __ge__(self, other):
    return mycmp(self.obj, other.obj) >= 0
    __hash__ = None
    return K

    try:
    from _functools import cmp_to_key
    except ImportError:
    pass


    ################################################################################
    ### partial() argument application
    ################################################################################

    # Purely functional, no descriptor behaviour
    class partial:
    """New function with partial application of the given arguments
    and keywords.
    """

    __slots__ = "func", "args", "keywords", "__dict__", "__weakref__"

    def __new__(*args, **keywords):
    if not args:
    raise TypeError("descriptor '__new__' of partial needs an argument")
    if len(args) < 2:
    raise TypeError("type 'partial' takes at least one argument")
    cls, func, *args = args
    if not callable(func):
    raise TypeError("the first argument must be callable")
    args = tuple(args)

    if hasattr(func, "func"):
    args = func.args + args
    tmpkw = func.keywords.copy()
    tmpkw.update(keywords)
    keywords = tmpkw
    del tmpkw
    func = func.func

    self = super(partial, cls).__new__(cls)

    self.func = func
    self.args = args
    self.keywords = keywords
    return self

    def __call__(*args, **keywords):
    if not args:
    raise TypeError("descriptor '__call__' of partial needs an argument")
    self, *args = args
    newkeywords = self.keywords.copy()
    newkeywords.update(keywords)
    return self.func(*self.args, *args, **newkeywords)

    @recursive_repr()
    def __repr__(self):
    qualname = type(self).__qualname__
    args = [repr(self.func)]
    args.extend(repr(x) for x in self.args)
    args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
    if type(self).__module__ == "functools":
    return f"functools.{qualname}({', '.join(args)})"
    return f"{qualname}({', '.join(args)})"

    def __reduce__(self):
    return type(self), (self.func,), (self.func, self.args,
    self.keywords or None, self.__dict__ or None)

    def __setstate__(self, state):
    if not isinstance(state, tuple):
    raise TypeError("argument to __setstate__ must be a tuple")
    if len(state) != 4:
    raise TypeError(f"expected 4 items in state, got {len(state)}")
    func, args, kwds, namespace = state
    if (not callable(func) or not isinstance(args, tuple) or
    (kwds is not None and not isinstance(kwds, dict)) or
    (namespace is not None and not isinstance(namespace, dict))):
    raise TypeError("invalid partial state")

    args = tuple(args) # just in case it's a subclass
    if kwds is None:
    kwds = {}
    elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
    kwds = dict(kwds)
    if namespace is None:
    namespace = {}

    self.__dict__ = namespace
    self.func = func
    self.args = args
    self.keywords = kwds

    try:
    from _functools import partial
    except ImportError:
    pass

    # Descriptor version
    class partialmethod(object):
    """Method descriptor with partial application of the given arguments
    and keywords.

    Supports wrapping existing descriptors and handles non-descriptor
    callables as instance methods.
    """

    def __init__(*args, **keywords):
    if len(args) >= 2:
    self, func, *args = args
    elif not args:
    raise TypeError("descriptor '__init__' of partialmethod "
    "needs an argument")
    elif 'func' in keywords:
    func = keywords.pop('func')
    self, *args = args
    else:
    raise TypeError("type 'partialmethod' takes at least one argument, "
    "got %d" % (len(args)-1))
    args = tuple(args)

    if not callable(func) and not hasattr(func, "__get__"):
    raise TypeError("{!r} is not callable or a descriptor"
    .format(func))

    # func could be a descriptor like classmethod which isn't callable,
    # so we can't inherit from partial (it verifies func is callable)
    if isinstance(func, partialmethod):
    # flattening is mandatory in order to place cls/self before all
    # other arguments
    # it's also more efficient since only one function will be called
    self.func = func.func
    self.args = func.args + args
    self.keywords = func.keywords.copy()
    self.keywords.update(keywords)
    else:
    self.func = func
    self.args = args
    self.keywords = keywords

    def __repr__(self):
    args = ", ".join(map(repr, self.args))
    keywords = ", ".join("{}={!r}".format(k, v)
    for k, v in self.keywords.items())
    format_string = "{module}.{cls}({func}, {args}, {keywords})"
    return format_string.format(module=self.__class__.__module__,
    cls=self.__class__.__qualname__,
    func=self.func,
    args=args,
    keywords=keywords)

    def _make_unbound_method(self):
    def _method(*args, **keywords):
    call_keywords = self.keywords.copy()
    call_keywords.update(keywords)
    cls_or_self, *rest = args
    call_args = (cls_or_self,) + self.args + tuple(rest)
    return self.func(*call_args, **call_keywords)
    _method.__isabstractmethod__ = self.__isabstractmethod__
    _method._partialmethod = self
    return _method

    def __get__(self, obj, cls):
    get = getattr(self.func, "__get__", None)
    result = None
    if get is not None:
    new_func = get(obj, cls)
    if new_func is not self.func:
    # Assume __get__ returning something new indicates the
    # creation of an appropriate callable
    result = partial(new_func, *self.args, **self.keywords)
    try:
    result.__self__ = new_func.__self__
    except AttributeError:
    pass
    if result is None:
    # If the underlying descriptor didn't do anything, treat this
    # like an instance method
    result = self._make_unbound_method().__get__(obj, cls)
    return result

    @property
    def __isabstractmethod__(self):
    return getattr(self.func, "__isabstractmethod__", False)


    ################################################################################
    ### LRU Cache function decorator
    ################################################################################

    _CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])

    class _HashedSeq(list):
    """ This class guarantees that hash() will be called no more than once
    per element. This is important because the lru_cache() will hash
    the key multiple times on a cache miss.

    """

    __slots__ = 'hashvalue'

    def __init__(self, tup, hash=hash):
    self[:] = tup
    self.hashvalue = hash(tup)

    def __hash__(self):
    return self.hashvalue

    def _make_key(args, kwds, typed,
    kwd_mark = (object(),),
    fasttypes = {int, str},
    tuple=tuple, type=type, len=len):
    """Make a cache key from optionally typed positional and keyword arguments

    The key is constructed in a way that is flat as possible rather than
    as a nested structure that would take more memory.

    If there is only a single argument and its data type is known to cache
    its hash value, then that argument is returned without a wrapper. This
    saves space and improves lookup speed.

    """
    # All of code below relies on kwds preserving the order input by the user.
    # Formerly, we sorted() the kwds before looping. The new way is *much*
    # faster; however, it means that f(x=1, y=2) will now be treated as a
    # distinct call from f(y=2, x=1) which will be cached separately.
    key = args
    if kwds:
    key += kwd_mark
    for item in kwds.items():
    key += item
    if typed:
    key += tuple(type(v) for v in args)
    if kwds:
    key += tuple(type(v) for v in kwds.values())
    elif len(key) == 1 and type(key[0]) in fasttypes:
    return key[0]
    return _HashedSeq(key)

    def lru_cache(maxsize=128, typed=False):
    """Least-recently-used cache decorator.

    If *maxsize* is set to None, the LRU features are disabled and the cache
    can grow without bound.

    If *typed* is True, arguments of different types will be cached separately.
    For example, f(3.0) and f(3) will be treated as distinct calls with
    distinct results.

    Arguments to the cached function must be hashable.

    View the cache statistics named tuple (hits, misses, maxsize, currsize)
    with f.cache_info(). Clear the cache and statistics with f.cache_clear().
    Access the underlying function with f.__wrapped__.

    See: http://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)

    """

    # Users should only access the lru_cache through its public API:
    # cache_info, cache_clear, and f.__wrapped__
    # The internals of the lru_cache are encapsulated for thread safety and
    # to allow the implementation to change (including a possible C version).

    # Early detection of an erroneous call to @lru_cache without any arguments
    # resulting in the inner function being passed to maxsize instead of an
    # integer or None. Negative maxsize is treated as 0.
    if isinstance(maxsize, int):
    if maxsize < 0:
    maxsize = 0
    elif maxsize is not None:
    raise TypeError('Expected maxsize to be an integer or None')

    def decorating_function(user_function):
    wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
    return update_wrapper(wrapper, user_function)

    return decorating_function

    def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
    # Constants shared by all lru cache instances:
    sentinel = object() # unique object used to signal cache misses
    make_key = _make_key # build a key from the function arguments
    PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields

    cache = {}
    hits = misses = 0
    full = False
    cache_get = cache.get # bound method to lookup a key or return None
    cache_len = cache.__len__ # get cache size without calling len()
    lock = RLock() # because linkedlist updates aren't threadsafe
    root = [] # root of the circular doubly linked list
    root[:] = [root, root, None, None] # initialize by pointing to self

    if maxsize == 0:

    def wrapper(*args, **kwds):
    # No caching -- just a statistics update
    nonlocal misses
    misses += 1
    result = user_function(*args, **kwds)
    return result

    elif maxsize is None:

    def wrapper(*args, **kwds):
    # Simple caching without ordering or size limit
    nonlocal hits, misses
    key = make_key(args, kwds, typed)
    result = cache_get(key, sentinel)
    if result is not sentinel:
    hits += 1
    return result
    misses += 1
    result = user_function(*args, **kwds)
    cache[key] = result
    return result

    else:

    def wrapper(*args, **kwds):
    # Size limited caching that tracks accesses by recency
    nonlocal root, hits, misses, full
    key = make_key(args, kwds, typed)
    with lock:
    link = cache_get(key)
    if link is not None:
    # Move the link to the front of the circular queue
    link_prev, link_next, _key, result = link
    link_prev[NEXT] = link_next
    link_next[PREV] = link_prev
    last = root[PREV]
    last[NEXT] = root[PREV] = link
    link[PREV] = last
    link[NEXT] = root
    hits += 1
    return result
    misses += 1
    result = user_function(*args, **kwds)
    with lock:
    if key in cache:
    # Getting here means that this same key was added to the
    # cache while the lock was released. Since the link
    # update is already done, we need only return the
    # computed result and update the count of misses.
    pass
    elif full:
    # Use the old root to store the new key and result.
    oldroot = root
    oldroot[KEY] = key
    oldroot[RESULT] = result
    # Empty the oldest link and make it the new root.
    # Keep a reference to the old key and old result to
    # prevent their ref counts from going to zero during the
    # update. That will prevent potentially arbitrary object
    # clean-up code (i.e. __del__) from running while we're
    # still adjusting the links.
    root = oldroot[NEXT]
    oldkey = root[KEY]
    oldresult = root[RESULT]
    root[KEY] = root[RESULT] = None
    # Now update the cache dictionary.
    del cache[oldkey]
    # Save the potentially reentrant cache[key] assignment
    # for last, after the root and links have been put in
    # a consistent state.
    cache[key] = oldroot
    else:
    # Put result in a new link at the front of the queue.
    last = root[PREV]
    link = [last, root, key, result]
    last[NEXT] = root[PREV] = cache[key] = link
    # Use the cache_len bound method instead of the len() function
    # which could potentially be wrapped in an lru_cache itself.
    full = (cache_len() >= maxsize)
    return result

    def cache_info():
    """Report cache statistics"""
    with lock:
    return _CacheInfo(hits, misses, maxsize, cache_len())

    def cache_clear():
    """Clear the cache and cache statistics"""
    nonlocal hits, misses, full
    with lock:
    cache.clear()
    root[:] = [root, root, None, None]
    hits = misses = 0
    full = False

    wrapper.cache_info = cache_info
    wrapper.cache_clear = cache_clear
    return wrapper

    try:
    from _functools import _lru_cache_wrapper
    except ImportError:
    pass


    ################################################################################
    ### singledispatch() - single-dispatch generic function decorator
    ################################################################################

    def _c3_merge(sequences):
    """Merges MROs in *sequences* to a single MRO using the C3 algorithm.

    Adapted from http://www.python.org/download/releases/2.3/mro/.

    """
    result = []
    while True:
    sequences = [s for s in sequences if s] # purge empty sequences
    if not sequences:
    return result
    for s1 in sequences: # find merge candidates among seq heads
    candidate = s1[0]
    for s2 in sequences:
    if candidate in s2[1:]:
    candidate = None
    break # reject the current head, it appears later
    else:
    break
    if candidate is None:
    raise RuntimeError("Inconsistent hierarchy")
    result.append(candidate)
    # remove the chosen candidate
    for seq in sequences:
    if seq[0] == candidate:
    del seq[0]

    def _c3_mro(cls, abcs=None):
    """Computes the method resolution order using extended C3 linearization.

    If no *abcs* are given, the algorithm works exactly like the built-in C3
    linearization used for method resolution.

    If given, *abcs* is a list of abstract base classes that should be inserted
    into the resulting MRO. Unrelated ABCs are ignored and don't end up in the
    result. The algorithm inserts ABCs where their functionality is introduced,
    i.e. issubclass(cls, abc) returns True for the class itself but returns
    False for all its direct base classes. Implicit ABCs for a given class
    (either registered or inferred from the presence of a special method like
    __len__) are inserted directly after the last ABC explicitly listed in the
    MRO of said class. If two implicit ABCs end up next to each other in the
    resulting MRO, their ordering depends on the order of types in *abcs*.

    """
    for i, base in enumerate(reversed(cls.__bases__)):
    if hasattr(base, '__abstractmethods__'):
    boundary = len(cls.__bases__) - i
    break # Bases up to the last explicit ABC are considered first.
    else:
    boundary = 0
    abcs = list(abcs) if abcs else []
    explicit_bases = list(cls.__bases__[:boundary])
    abstract_bases = []
    other_bases = list(cls.__bases__[boundary:])
    for base in abcs:
    if issubclass(cls, base) and not any(
    issubclass(b, base) for b in cls.__bases__
    ):
    # If *cls* is the class that introduces behaviour described by
    # an ABC *base*, insert said ABC to its MRO.
    abstract_bases.append(base)
    for base in abstract_bases:
    abcs.remove(base)
    explicit_c3_mros = [_c3_mro(base, abcs=abcs) for base in explicit_bases]
    abstract_c3_mros = [_c3_mro(base, abcs=abcs) for base in abstract_bases]
    other_c3_mros = [_c3_mro(base, abcs=abcs) for base in other_bases]
    return _c3_merge(
    [[cls]] +
    explicit_c3_mros + abstract_c3_mros + other_c3_mros +
    [explicit_bases] + [abstract_bases] + [other_bases]
    )

    def _compose_mro(cls, types):
    """Calculates the method resolution order for a given class *cls*.

    Includes relevant abstract base classes (with their respective bases) from
    the *types* iterable. Uses a modified C3 linearization algorithm.

    """
    bases = set(cls.__mro__)
    # Remove entries which are already present in the __mro__ or unrelated.
    def is_related(typ):
    return (typ not in bases and hasattr(typ, '__mro__')
    and issubclass(cls, typ))
    types = [n for n in types if is_related(n)]
    # Remove entries which are strict bases of other entries (they will end up
    # in the MRO anyway.
    def is_strict_base(typ):
    for other in types:
    if typ != other and typ in other.__mro__:
    return True
    return False
    types = [n for n in types if not is_strict_base(n)]
    # Subclasses of the ABCs in *types* which are also implemented by
    # *cls* can be used to stabilize ABC ordering.
    type_set = set(types)
    mro = []
    for typ in types:
    found = []
    for sub in typ.__subclasses__():
    if sub not in bases and issubclass(cls, sub):
    found.append([s for s in sub.__mro__ if s in type_set])
    if not found:
    mro.append(typ)
    continue
    # Favor subclasses with the biggest number of useful bases
    found.sort(key=len, reverse=True)
    for sub in found:
    for subcls in sub:
    if subcls not in mro:
    mro.append(subcls)
    return _c3_mro(cls, abcs=mro)

    def _find_impl(cls, registry):
    """Returns the best matching implementation from *registry* for type *cls*.

    Where there is no registered implementation for a specific type, its method
    resolution order is used to find a more generic implementation.

    Note: if *registry* does not contain an implementation for the base
    *object* type, this function may return None.

    """
    mro = _compose_mro(cls, registry.keys())
    match = None
    for t in mro:
    if match is not None:
    # If *match* is an implicit ABC but there is another unrelated,
    # equally matching implicit ABC, refuse the temptation to guess.
    if (t in registry and t not in cls.__mro__
    and match not in cls.__mro__
    and not issubclass(match, t)):
    raise RuntimeError("Ambiguous dispatch: {} or {}".format(
    match, t))
    break
    if t in registry:
    match = t
    return registry.get(match)

    def singledispatch(func):
    """Single-dispatch generic function decorator.

    Transforms a function into a generic function, which can have different
    behaviours depending upon the type of its first argument. The decorated
    function acts as the default implementation, and additional
    implementations can be registered using the register() attribute of the
    generic function.
    """
    # There are many programs that use functools without singledispatch, so we
    # trade-off making singledispatch marginally slower for the benefit of
    # making start-up of such applications slightly faster.
    import types, weakref

    registry = {}
    dispatch_cache = weakref.WeakKeyDictionary()
    cache_token = None

    def dispatch(cls):
    """generic_func.dispatch(cls) -> <function implementation>

    Runs the dispatch algorithm to return the best available implementation
    for the given *cls* registered on *generic_func*.

    """
    nonlocal cache_token
    if cache_token is not None:
    current_token = get_cache_token()
    if cache_token != current_token:
    dispatch_cache.clear()
    cache_token = current_token
    try:
    impl = dispatch_cache[cls]
    except KeyError:
    try:
    impl = registry[cls]
    except KeyError:
    impl = _find_impl(cls, registry)
    dispatch_cache[cls] = impl
    return impl

    def register(cls, func=None):
    """generic_func.register(cls, func) -> func

    Registers a new implementation for the given *cls* on a *generic_func*.

    """
    nonlocal cache_token
    if func is None:
    if isinstance(cls, type):
    return lambda f: register(cls, f)
    ann = getattr(cls, '__annotations__', {})
    if not ann:
    raise TypeError(
    f"Invalid first argument to `register()`: {cls!r}. "
    f"Use either `@register(some_class)` or plain `@register` "
    f"on an annotated function."
    )
    func = cls

    # only import typing if annotation parsing is necessary
    from typing import get_type_hints
    argname, cls = next(iter(get_type_hints(func).items()))
    assert isinstance(cls, type), (
    f"Invalid annotation for {argname!r}. {cls!r} is not a class."
    )
    registry[cls] = func
    if cache_token is None and hasattr(cls, '__abstractmethods__'):
    cache_token = get_cache_token()
    dispatch_cache.clear()
    return func

    def wrapper(*args, **kw):
    if not args:
    raise TypeError(f'{funcname} requires at least '
    '1 positional argument')

    return dispatch(args[0].__class__)(*args, **kw)

    funcname = getattr(func, '__name__', 'singledispatch function')
    registry[object] = func
    wrapper.register = register
    wrapper.dispatch = dispatch
    wrapper.registry = types.MappingProxyType(registry)
    wrapper._clear_cache = dispatch_cache.clear
    update_wrapper(wrapper, func)
    return wrapper
  • 相关阅读:
    Python有用的内置函数divmod,id,sorted,enumerate,input,oct,eval,exec,isinstance,ord,chr,filter,vars,zip
    audio的自动播放报错解决
    高德搜索定位,获取信息
    柱状图的点击事件
    高德局部刷新标记点,bug解决
    递归
    CentOS7搭建LNMP环境
    CentOS7安装RabbitMQ
    前端项目代码加密教程
    复杂度分析
  • 原文地址:https://www.cnblogs.com/rsapaper/p/12976510.html
Copyright © 2011-2022 走看看