zoukankan      html  css  js  c++  java
  • 求区间最大值【线段树&倍增】模板题


    image


    先用线段树做了一下,结果用cin超时,数据太变态了,此题正解应该是倍增算法。

    先看看线段树怎么做这题;

    如果不懂线段树的先看此视频:https://www.bilibili.com/video/BV1cb411t7AM?from=search&seid=13093045061996989240

    1.线段树:


      1 #include <iostream>
      2 #include <algorithm>
      3 #include <cstdio>
      4 using namespace std;
      5 
      6 constexpr size_t N = 4e5 + 10;
      7 int arr[N], tree[N];
      8 
      9 void build_tree(int node, int start, int end) {
     10 	if (start == end) {
     11 		tree[node] = arr[start];
     12 		return;
     13 	}
     14 	int mid = (start + end) >> 1;
     15 	int left_node =  node << 1;
     16 	int right_node =  (node << 1) + 1;
     17 	build_tree(left_node, start, mid);
     18 	build_tree(right_node, mid + 1, end);
     19 
     20 	tree[node] = max(tree[left_node], tree[right_node]);
     21 }
     22 
     23 int query_tree(int node, int start, int end, int L, int R) {
     24 	if (L > end || R < start)
     25 		return 0;
     26 	else if (L <= start && end <= R)
     27 		return tree[node];
     28 	int mid = (start + end) >> 1;
     29 	int left_node =  node << 1;
     30 	int right_node = (node << 1 ) + 1;
     31 	int left_max = query_tree(left_node, start, mid, L, R);
     32 	int right_max = query_tree(right_node, mid + 1, end, L, R);
     33 	return max(left_max, right_max);
     34 }
     35 
     36 int main() {
     37 
     38 	int n, m;
     39 	scanf("%d%d", &n, &m);
     40 	for (int i = 1; i <= n; ++i) scanf("%d",&arr[i]);
     41 	build_tree(1, 1, n);
     42 	while (m--) {
     43 		int L, R;
     44 		scanf("%d%d", &L, &R);
     45 		printf("%d
    ",query_tree(1, 1, n, L, R));
     46 	}
     47 }

    2.倍增算法(ST):

    倍增看lyd

    https://www.bilibili.com/video/BV14t411t73D?from=search&seid=17507997773809817751

      1 #include <iostream>
      2 #include <algorithm>
      3 using namespace std;
      4 
      5 constexpr size_t N = 2e5 + 5;
      6 int dp[N][30];
      7 int a[N];
      8 int n, m;
      9 
     10 void getRMQ() {
     11 	for(int i = 1; i <= n; ++ i) dp[i][0] = a[i];
     12 	for (int j = 1; (1 << j) <= n; ++j) {
     13 		for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
     14 			dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
     15 		}
     16 	}
     17 }
     18 int RMQmax(int l, int r) {
     19 	int k = 0;
     20 	while ((1 << (k + 1)) <= r - l + 1) ++k;
     21 	return max(dp[l][k], dp[r - (1 << k) + 1][k]);
     22 }
     23 
     24 int main() {
     25 	scanf("%d%d", &n, &m);
     26 	for(int i = 1; i <= n; ++ i) scanf("%d", &a[i]);
     27 	getRMQ();
     28 	int l, r;
     29 	while(m--) {
     30 		scanf("%d%d", &l, &r);
     31 		printf("%d
    ", RMQmax(l, r));
     32 	}
     33 	return 0;
     34 
     35 }
     36 


  • 相关阅读:
    C++之流与文件
    C++之检测文件结尾
    统信UOS
    统信UOS
    统信UOS
    八、【Docker笔记】使用Dockerfile创建镜像
    七、【Docker笔记】Docker中网络基础配置
    六、【Docker笔记】Docker数据管理
    五、【Docker笔记】Dockers仓库
    四、【Docker笔记】Docker容器
  • 原文地址:https://www.cnblogs.com/rstz/p/12782836.html
Copyright © 2011-2022 走看看