1009 Divisibility
题意搞半天才搞懂,把一个词翻译了一下,原来是命题的意思,我以为是一个定义。。
还是队友告诉我我才理解的题意
就是一个命题:如果任意一个b进制数,如果它的每位数加起来能被 x 整除,那么它也可以被 x 整除
就比如任意一个10进制数,如果它的每一位数加起来能被 3 整除,那么它就能被 3 整除,命题为真
但任意一个10进制数,如果它的每一位数加起来能被4整除,它不一定能被4整除,命题就为假
为什么b=10时,x=3时,会有这个性质呢
这是因为10≡1(mod3),100≡1(mod3),1000≡1(mod3)....,46374≡(40000+6000+300+70+4)≡(4+6+3+7+4) (mod3)
(这个原理我很早以前就知道的)
显而易见,就是任意一个数左移一位后要同余它本身,左移一位就相当于乘以b,也就是要满足b≡1(mod x)
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int T;
long long b,x;
cin>>T;
while(T--){
cin>>b>>x;
if((b-1)%x==0) cout<<"T"<<endl;
else cout<<"F"<<endl;
}
return 0;
}
1002 Little Rabbit's Equation
进制模拟题,感觉有点麻烦的模拟,还好队友帮我过了这题,强
#include <bits/stdc++.h>
using namespace std;
#define int long long
// const int MAXN = ;
// const int MOD = ;
// const int INF = ;
// const double eps = ;
// const int DIRX[] = {};
// const int DIRY[] = {};
string str;
char op;
string num[5];
int dci[5];
void getnum()
{
int cnt = 1;
num[1] = "";
num[2] = "";
num[3] = "";
for (int i = 0; i < str.length(); ++i)
{
if (str[i] == '=')
{
cnt++;
continue;
}
else if (str[i] == '+' || str[i] == '-'
|| str[i] == '*' || str[i] == '/')
{
cnt++;
op = str[i];
continue;
}
else
{
if (str[i] >= '0' && str[i] <= '9')
num[cnt] += (char)(str[i] - '0' + 1);
else
num[cnt] += (char)(str[i] - 'A' + 11);
}
}
if (op == '-')
{
op = '+';
swap(num[1], num[3]);
}
if (op == '/')
{
op = '*';
swap(num[1], num[3]);
}
}
int32_t main(void)
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
while (cin >> str)
{
getnum();
bool flg = false;
for (int i = 2; i <= 16; ++i)
{
bool ok = false;
for (int j = 1; j <= 3; ++j)
{
dci[j] = 0;
int tmp = 1;
for (int k = num[j].length() - 1; k >= 0; --k)
{
// cout << (int)num[j][k] << " ";
if (num[j][k] - 1 >= i)
{
ok = true;
break;
}
dci[j] += (num[j][k] - 1) * tmp;
tmp *= i;
}
if (ok)
break;
}
// cout << dci[1] << " " << dci[2] << " " << dci[3] << endl;
if (ok)
continue;
if (!ok && op == '+')
{
if (dci[1] + dci[2] == dci[3])
{
flg = true;
// cout << dci[1] << "+" << dci[2] << "=" << dci[3] << endl;
cout << i << endl;
}
}
if (!ok && op == '*')
{
if (dci[1] * dci[2] == dci[3])
{
flg = true;
// cout << dci[1] << "*" << dci[2] << "=" << dci[3] << endl;
cout << i << endl;
}
}
if (flg)
break;
}
if (!flg)
cout << -1 << endl;
}
return 0;
}
1001 Road To The 3rd Building
有 n 个数,要在[1,n]里任选一个区间,区间的价值=区间内所有数之和 / 区间长度,求价值的期望是多少
思路:求每个数对最终价值的期望的贡献
假设有五个数,
若选择的区间长度为5,这五个数各自贡献的区间数为 1 1 1 1 1
若选择的区间长度为4,这五个数各自贡献的区间数为 1 2 2 2 1
若选择的区间长度为3,这五个数各自贡献的区间数为 1 2 3 2 1
若选择的区间长度为2,这五个数各自贡献的区间数为 1 2 2 2 1
若选择的区间长度为1,这五个数各自贡献的区间数为 1 1 1 1 1
就是这个规律
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int MAXN = 2e5+7;
const long long MOD = 1e9+7;
long long s[MAXN];
long long th[MAXN];
long long inv[MAXN];
long long qpow(long long n,long long p){
long long ret = 1;
for (; p; p >>= 1, n = n * n % MOD)
if (p & 1)
ret = ret * n % MOD;
return ret;
}
long long mod_inv(long long a) {
return qpow(a,MOD - 2);
}
void pre(){
inv[1] = 1;
for (int i = 2; i <= 2e5; ++i)
inv[i] = (MOD - MOD / i) * inv[MOD % i] % MOD;
for(int i = 1;i <= 2e5; i++){
th[i] = (th[i-1] + inv[i]) % MOD;
}
}
int main()
{
int T, n;
pre();
cin >> T;
while(T--){
cin >> n;
for(int i = 1;i <= n;i++){
scanf("%lld",&s[i]);
}
long long fz = 0, fm;
long long tt = 0;
for(int i = 1;i * 2 <= n;i++){
s[i] += s[n-i+1];
s[i] %= MOD;
tt += th[n-i+1] - th[i-1];
tt = (tt % MOD + MOD) % MOD;
fz = (fz + s[i] * tt) % MOD;
}
if(n % 2){
tt += inv[n/2+1];
tt = (tt % MOD + MOD) % MOD;
fz = (fz + s[n/2+1] * tt) % MOD;
}
fm = (long long)n * ((long long)n+1) / 2 % MOD;//n没有强制转换成long long啊啊
long long ans = fz * mod_inv(fm) % MOD;
cout<<ans<<endl;
}
return 0;
}
n没有强制转换成long long wa了挺久qwq
1006 A Very Easy Graph Problem
给n个点,m条边,每个点有0,1两种状态,要求所有0点到所有1点的最短路的长度之和
给的这m条边满足第 i 条边的长度为2^i
根据边长度的性质,可以知道如果A点连了长度为2,4,8,16的边到B,又连了条直接从A到B的边,但这边的长度为32,不能为最短路
推出一个结论,后面加的边不可能更新已有的最短路,这个边就忽略掉
这样就像一个并查集一样,把这个图变成若干棵树,然后我就在这些树上进行树形dp
然后我写了个dfs就MLE了...
直到比赛结束我还是MLE
现在才发现原来我并查集写炸了,死循环了。。。。
然后并查集改好了,还是wa了,手推样例才发现,我那树形dp的方法是错的,要直接dfs一遍每条边的贡献就是这条边的长度*(其一端0点数*另一端1点数+另一端0点数*其一端1点数)
终于过了xd
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
using namespace std;
const int MAXN = 1e5+7;
const int MAXM = 2e5+7;
const long long MOD = 1e9+7;
int a[MAXN];
long long llo[MAXM];
struct EDGE{
int to, w ,next;
}edge[MAXN*2];
int head[MAXN],tot;
void add(int u,int v,int w){
tot++;
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot;
}
int n,m;
long long ans;
int par[MAXN];
int find(int x){
if(par[x] == x) return x;
return par[x] = find(par[x]);
}
void pre(){
llo[0] = 1;
for(int i = 1;i <= 2e5;i++){
llo[i] = llo[i-1] << 1;
llo[i] %= MOD;
}
}
int son0[MAXN],son1[MAXN];
long long edg[MAXN];
void dfs(int st,int f){
son0[st] = son1[st] = 0;
if(a[st] == 0) son0[st]++;
else son1[st]++;
for(int i = head[st];i ;i = edge[i].next){
int po = edge[i].to;
if(po == f) continue;
long long lo = edge[i].w;
lo = llo[lo];
edg[po] = lo;
dfs(po,st);
son0[st] += son0[po];
son1[st] += son1[po];
}
}
int main()
{
//freopen("1.in","r",stdin);
int T;
pre();
cin >> T;
int u,v;
while(T--){
cin >> n >> m;
ans = 0;
tot = 0;
for(int i = 1;i <= n; i++) {
scanf("%d",&a[i]);
par[i] = i;
head[i] = 0;
}
for(int i = 1;i <= m; i++) {
scanf("%d%d",&u,&v);
int fu = find(u), fv = find(v);
if(fu == fv) continue;
else{
par[fu] = fv;
add(u,v,i);
add(v,u,i);
}
}
long long res;
for(int i = 1;i <= n;i++){
if(par[i] == i) dfs(i,0);
}
for(int i = 1;i <= n;i++){
if(find(i)!=i){//不能写成if(par[i]!-=i)因为par[i]并不一定直接连到根节点!
long long ct = 0;
ct =
(long long)son1[i] * ( (long long)son0[par[i]] - (long long)son0[i] ) +
(long long)son0[i] * ( (long long)son1[par[i]] - (long long)son1[i] ) ;
ans += edg[i] * ct;
ans %= MOD;
}
}
cout << ans << endl;
}
return 0;
}