zoukankan      html  css  js  c++  java
  • TFIDF学习(python实现)

    从大一开始接触TF-IDF,一直觉得这个特别简单,,但是图样图森破,,,

    即使现在来说,也似乎并非完全搞懂

    核心思想:

      计算词语在该文章中权重,与词语出现次数和词语价值有关

      词语出现次数,重复即强调,越重要

      词语价值,出现在越多的文档中越滥情,越廉价

    公式:

      词频TF = 出现次数 / 总次数

      逆向文件频率IDF = log( 总文档数 / ( 出现文档数+1) )

      TF-IDF = TF * IDF

    具体计算:

    1.我的代码:

      # 由于算这个是为了求feature值,因此用了jieba,轻量级好用的分词包,具体可参见它的github:https://github.com/hosiet/jieba

      # 并且最终计算结果用json存储在文件中

      起初,自己写了个代码计算

     1 #coding=utf-8
     2 import jieba
     3 import re
     4 import math
     5 import json
     6 
     7 with open('stop_words.txt', 'r', encoding='utf-8') as f:
     8     stopwords = [x[:-1] for x in f]
     9 
    10 data = []
    11 tf = {}
    12 doc_num = {}
    13 tfidf = {}
    14 
    15 def calcu_tf():
    16     '''计算tf值'''
    17     with open('exercise.txt', 'r', encoding='utf-8') as f:
    18         lines = f.readlines()
    19         global TOTAL
    20         TOTAL = 0
    21         for l in lines:
    22             # 使用jieba分词
    23             lx = re.sub('\W', '', l)
    24             list = jieba.lcut(lx)
    25             # 每句话中一个词可能出现多次
    26             tmp = {}
    27             for i in list:
    28                 if(i not in doc_num):
    29                     doc_num[i] = 0
    30                 if (i not in stopwords)and(i not in tmp):
    31                     data.append(i)
    32                     # 计算出现在多少个文档里
    33                     tmp[i] = 1
    34                     doc_num[i] += 1
    35             # 计算总文档数
    36             TOTAL += 1
    37     dataset = set(data)
    38     for i in dataset:
    39         tf[i] = data.count(i)
    40 
    41 
    42 def calcu_tfidf():
    43     '''计算TF-IDF值'''
    44     for i in tf:
    45         tfidf[i] = tf[i] * math.log10(TOTAL / (doc_num[i]+1))
    46 
    47 if __name__ == '__main__' :
    48     calcu_tf()
    49     calcu_tfidf()
    50     print(tfidf)
    51     with open('tfidf.json', 'w', encoding="utf-8") as file:
    52         # json.dumps需要设置一下参数,不然文件中全是/u什么的
    53         file.write(json.dumps(tfidf, ensure_ascii=False, indent=2))

    是自己设置的测试文档。。以及运算结果(部分截图)

     

    最终用时1.54041444018928秒

    2.使用sklearn包

     但后来觉得,有现成能用就用现成的,毕竟少好多代码

    于是,使用scikit-learn计算TF-IDF值就诞生了

      # sklearn包的安装另一篇博客中有写http://www.cnblogs.com/rucwxb/p/7297733.html

    计算过程:

      CountVectorizer计算TF

      TFidfTransformer计算IDF

    核心代码:

     1 from sklearn.feature_extraction.text import CountVectorizer
     2 from sklearn.feature_extraction.text import TfidfTransformer
     3 from numpy import *
     4 import time
     5 import jieba
     6 import re
     7 
     8 
     9 def calcu_tfidf():
    10     corpus = []
    11     idfDic = {}
    12     tf = {}
    13     tfs = []
    14     tfidf = {}
    15     with open('exercise.txt', 'r', encoding='utf-8') as f:
    16         for x in f:
    17             lx = re.sub('\W', '', x)
    18             jb = jieba.lcut(lx)
    19             list = []
    20             for i in jb:
    21                 if i not in stopwords:
    22                     list.append(i)
    23             list = " ".join(list)
    24             corpus.append(list)
    25     #将文本中的词语转换为词频矩阵
    26     vectorizer = CountVectorizer(ngram_range=(1, 1), lowercase=False, token_pattern = r'\b\w+\b', min_df = 1)
    27     #类调用
    28     transformer = TfidfTransformer()
    29     #计算个词语出现的次数
    30     tf_mat = vectorizer.fit_transform(corpus)
    31     tfidf = transformer.fit_transform(tf_mat)
    32     #获取词袋中所有文本关键词
    33     words = vectorizer.get_feature_names()
    34     # 获得IDF和TF值
    35     tfs = tf_mat.sum(axis=0).tolist()
    36     for i, word in enumerate(words):
    37         idfDic[word] = transformer.idf_[i]
    38         tf[word] = tfs[i]
    39     # 计算TF-IDF
    40     for i in words:
    41         tfidf[i] = idfDic[i] * tf[i]
    42 
    43 
    44 if __name__ == '__main__' :
    45     startT = time.clock()
    46     with open('stop_words.txt', 'r', encoding='utf-8') as f:
    47         stopwords = [x[:-1] for x in f]
    48     calcu_tfidf()
    49     with open('tfidf2.json', 'w', encoding="utf-8") as file:
    50         # json.dumps需要设置一下参数,不然文件中全是/u什么的
    51         file.write(json.dumps(tfidf, ensure_ascii=False, indent=2))
    52     endT = time.clock()
    53     print(endT-startT)
  • 相关阅读:
    使用pod install 出现bad interpreter: No such file or directory
    简单易用且功能丰富的纯Swift下载框架
    Swift主题色顶级解决方案一
    如何基于WKWebView开发一个功能完善的资讯内容页
    关于iPhone X 的适配
    iOS11及Xcode9适配问题汇总
    优豆云
    Mac 网站屏蔽修改
    c语言
    iOS 12 前台通知shouldAlwaysAlertWhileAppIsForeground崩溃问题
  • 原文地址:https://www.cnblogs.com/rucwxb/p/7299117.html
Copyright © 2011-2022 走看看