zoukankan      html  css  js  c++  java
  • KA 接口表

    一、建表

    1、年日均销量表

    drop table app.app_basic_dashboard_goods_avg_year_sellnum;
    CREATE TABLE app.app_basic_dashboard_goods_avg_year_sellnum (
      seller_id bigint COMMENT '商家id', 
      seller_name string COMMENT '商家名称', 
      dept_id bigint COMMENT '事业部门id', 
      dept_name string COMMENT '事业部名字', 
      warehouse_id bigint COMMENT '入仓id', 
      warehouse_name string COMMENT '入仓名称',
      goods_id bigint COMMENT '商品id', 
      goods_no string COMMENT '商品序号', 
      goods_name string COMMENT '商品名称', 
      avg_year_sellnum float COMMENT '年日均销量',
      yn int COMMENT '删除标识 1为没删,0为删除', 
      create_pin string COMMENT '创建人', 
      update_pin string COMMENT '更新人', 
      create_time timestamp COMMENT '创建时间', 
      update_time timestamp COMMENT '更新时间', 
      ts timestamp COMMENT '时间戳')
    COMMENT 'KA商品销量预测年日均销量'
    PARTITIONED BY ( 
      dt string)
    ROW FORMAT DELIMITED 
      FIELDS TERMINATED BY '	' 
    STORED AS INPUTFORMAT 
      'org.apache.hadoop.mapred.TextInputFormat' 
    OUTPUTFORMAT 
      'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
    

     2、商家参数表

    CREATE EXTERNAL TABLE `app_basic_dashboard_goods_seller`(
      `seller_id` string COMMENT '商家id', 
      `seller_no` string COMMENT '商家编号', 
      `seller_name` string COMMENT '商家名称', 
      `dept_id` string COMMENT '部门id', 
      `dept_no` string COMMENT '部门编号', 
      `vlt` string COMMENT 'VLT',
      `alt` string COMMENT 'ALT',
      `satisfyAlpha` string COMMENT '出仓服务水平C',
      `safetyDays` int COMMENT '安全库存天数',
      `targetDays` int COMMENT '目标库存天数',
      `bp` string COMMENT 'BP',
      `task_exec_date` string COMMENT '任务执行时的时间,保存格式为:2018-03-31', 
      `yn` string COMMENT '删除标识 1为没删,0为删除', 
      `create_time` timestamp COMMENT '创建时间', 
      `create_pin` string COMMENT '创建人', 
      `update_pin` string COMMENT '更新人', 
      `update_time` timestamp COMMENT '更新时间', 
      `ts` timestamp COMMENT '时间戳')
    COMMENT '商家表'
    ROW FORMAT SERDE 
      'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' 
    STORED AS INPUTFORMAT 
      'org.apache.hadoop.mapred.TextInputFormat' 
    OUTPUTFORMAT 
      'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
    

    3、KA 临时中转表

    drop table app.app_basic_dashboard_goods_sale_predict_daily_tem;
    CREATE TABLE app.app_basic_dashboard_goods_sale_predict_daily_tem (
      seller_id bigint COMMENT '商家id', 
      seller_name string COMMENT '商家名称', 
      dept_id bigint COMMENT '事业部门id', 
      dept_no string COMMENT '事业部门编号',  
      dept_name string COMMENT '事业部名字', 
      goods_id bigint COMMENT '商品id', 
      goods_no string COMMENT '商品序号', 
      goods_name string COMMENT '商品名称', 
      warehouse_id bigint COMMENT '入仓id', 
      warehouse_no string COMMENT '入仓编号', 
      warehouse_name string COMMENT '入仓名称', 
      in_warehouse_city string COMMENT '入仓城市',
      satisfy_alpha string COMMENT '入仓服务水平C', 
      safe_stock_days string COMMENT '安全库存天数', 
      alt string COMMENT '出仓ALT', 
      vlt string COMMENT '出仓VLT', 
      in_stock_safety_num int COMMENT '安全库存', 
      target_stock_days string COMMENT '目标库存天数', 
      bp string COMMENT 'BP', 
      out_warehouse_no string COMMENT '出仓编号', 
      out_warehouse_name string COMMENT '出仓名称', 
      out_warehouse_city string COMMENT '出仓城市', 
      in_stock_max_num int COMMENT '目标库存', 
      bef_sales_1d string COMMENT 'T-1日销量', 
      bef_sales_2d string COMMENT 'T-2日销量', 
      bef_sales_3d string COMMENT 'T-3日销量',
      bef_sales_4d string COMMENT 'T-4日销量', 
      bef_sales_5d string COMMENT 'T-5日销量', 
      bef_sales_6d string COMMENT 'T-6日销量',
      bef_sales_7d string COMMENT 'T-7日销量', 
      in_stock_sales_14d string COMMENT '历史14日销量和', 
      in_stock_sales_28d string COMMENT '历史28日销量和',
      predict_sales_1d string COMMENT 'T+1日预测销量',
      predict_sales_2d string COMMENT 'T+2日预测销量', 
      predict_sales_3d string COMMENT 'T+3日预测销量',
      predict_sales_4d string COMMENT 'T+4日预测销量',
      predict_sales_5d string COMMENT 'T+5日预测销量', 
      predict_sales_6d string COMMENT 'T+6日预测销量',
      predict_sales_7d string COMMENT 'T+7日预测销量',
      in_stock_predict_sales_14d string COMMENT '14日预测销量和', 
      in_stock_predict_sales_28d string COMMENT '28日预测销量和',
      yn int COMMENT '删除标识 1为没删,0为删除', 
      create_pin string COMMENT '创建人', 
      update_pin string COMMENT '更新人', 
      create_time timestamp COMMENT '创建时间', 
      update_time timestamp COMMENT '更新时间', 
      ts timestamp COMMENT '时间戳')
    COMMENT 'KA商品销量预测接口中转表'
    PARTITIONED BY ( 
      dt string)
    ROW FORMAT DELIMITED 
      FIELDS TERMINATED BY '	' 
    STORED AS INPUTFORMAT 
      'org.apache.hadoop.mapred.TextInputFormat' 
    OUTPUTFORMAT 
      'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
    

     4、KA 接口表

    drop table app.app_basic_dashboard_goods_sale_predict_daily;
    CREATE TABLE app.app_basic_dashboard_goods_sale_predict_daily (
      seller_id bigint COMMENT '商家id', 
      seller_name string COMMENT '商家名称', 
      dept_id bigint COMMENT '事业部门id', 
      dept_no string COMMENT '事业部门编号',  
      dept_name string COMMENT '事业部名字', 
      goods_id bigint COMMENT '商品id', 
      goods_no string COMMENT '商品序号', 
      goods_name string COMMENT '商品名称', 
      warehouse_id bigint COMMENT '入仓id', 
      warehouse_no string COMMENT '入仓编号', 
      warehouse_name string COMMENT '入仓名称', 
      in_warehouse_city string COMMENT '入仓城市',
      satisfy_alpha string COMMENT '入仓服务水平C', 
      safe_stock_days string COMMENT '安全库存天数', 
      alt string COMMENT '出仓ALT', 
      vlt string COMMENT '出仓VLT', 
      in_stock_safety_num int COMMENT '安全库存', 
      target_stock_days string COMMENT '目标库存天数', 
      bp string COMMENT 'BP', 
      out_warehouse_no string COMMENT '出仓编号', 
      out_warehouse_name string COMMENT '出仓名称', 
      out_warehouse_city string COMMENT '出仓城市', 
      in_stock_max_num int COMMENT '目标库存', 
      bef_sales_1d string COMMENT 'T-1日销量', 
      bef_sales_2d string COMMENT 'T-2日销量', 
      bef_sales_3d string COMMENT 'T-3日销量',
      bef_sales_4d string COMMENT 'T-4日销量', 
      bef_sales_5d string COMMENT 'T-5日销量', 
      bef_sales_6d string COMMENT 'T-6日销量',
      bef_sales_7d string COMMENT 'T-7日销量', 
      in_stock_sales_14d string COMMENT '历史14日销量和', 
      in_stock_sales_28d string COMMENT '历史28日销量和',
      predict_sales_1d string COMMENT 'T+1日预测销量',
      predict_sales_2d string COMMENT 'T+2日预测销量', 
      predict_sales_3d string COMMENT 'T+3日预测销量',
      predict_sales_4d string COMMENT 'T+4日预测销量',
      predict_sales_5d string COMMENT 'T+5日预测销量', 
      predict_sales_6d string COMMENT 'T+6日预测销量',
      predict_sales_7d string COMMENT 'T+7日预测销量',
      in_stock_predict_sales_14d string COMMENT '14日预测销量和', 
      in_stock_predict_sales_28d string COMMENT '28日预测销量和',
      yn int COMMENT '删除标识 1为没删,0为删除', 
      create_pin string COMMENT '创建人', 
      update_pin string COMMENT '更新人', 
      create_time timestamp COMMENT '创建时间', 
      update_time timestamp COMMENT '更新时间', 
      ts timestamp COMMENT '时间戳')
    COMMENT 'KA商品销量预测接口表'
    PARTITIONED BY ( 
      dt string)
    ROW FORMAT DELIMITED 
      FIELDS TERMINATED BY '	' 
    STORED AS INPUTFORMAT 
      'org.apache.hadoop.mapred.TextInputFormat' 
    OUTPUTFORMAT 
      'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
    

    二、插值

    1、商家参数表

    insert overwrite table app.app_basic_dashboard_goods_seller
    select distinct
    	seller_id,
    	seller_no,
    	seller_name,
    	dept_id,
    	dept_no,
        '36' as vlt,  --VLT
        '10' as alt,  --ALT
        '0.8' as satisfyAlpha,  --出仓服务水平C
    	case
    		when seller_no = 'ECP0020000003619'  --安利
    		then 32
    		when seller_no = 'ECP0020000014466'  --住友
    		then 120
    		else 0
    	end as safetyDays,  --安全库存天数
    	case
    		when seller_no = 'ECP0020000003619'  
    		then 40
    		when seller_no = 'ECP0020000014466'  
    		then 132
    		else 0
    	end as targetDays,  --目标库存天数
        '20' as bp,  --BP
    	'"""+yesterday+"""' AS task_exec_date,
    	1 AS yn,
    	current_timestamp AS create_time,
    	'plumber' AS create_pin,
    	'plumber' AS update_pin,
    	current_timestamp AS update_time,
    	current_timestamp AS ts
    from
    	fdm.fdm_eclp_so1_so_main_chain
    WHERE
    	start_date <= '"""+yesterday+"""'
    	and end_date > '"""+yesterday+"""'
    	and seller_no in('ECP0020000003619', 'ECP0020000014466') ;
       
    

    2、年日均销量表

    #!/usr/bin/env python3
    ################################################################
    # AUTHOR:         wn
    # CREATED TIME:   2018-08-09
    # MODIFIED BY:    
    # MODIFTED TIME:  
    # REVIEWED BY:    
    # REVIEWED TIME:  
    # COMMENTS: goods
    
    ################################################################
    #===============================================================================
    #  FILE: exe_app_basic_dashboard_goods_avg_year_sellnum.py
    #  USAGE: ./exe_app_basic_dashboard_goods_avg_year_sellnum.py
    #  SRC_TABLE: 
    #  TGT_TABLE: app.app_basic_dashboard_goods_avg_year_sellnum
    #===============================================================================
    import sys
    import os
    import time
    import datetime
    import logging 
    import calendar
    
    sys.path.append(os.getenv('HIVE_TASK'))
    from HiveTask import HiveTask
    ht = HiveTask()
    today = ht.oneday(1)[0:10]
    yesterday  = ht.oneday(0)[0:10] 
    
    
    sql1 = """
    use app;
    	insert overwrite table app.app_basic_dashboard_goods_avg_year_sellnum partition
    	(
    	   dt = '"""+yesterday+"""'
    	) 
    	SELECT
    	seller_id, --商家id
    	seller_name, 
    	dept_id,
    	dept_name,
    	warehouse_id,
    	warehouse_name,
    	goods_id,
    	goods_no,
    	goods_name,
    	round((
    			case
    				WHEN saletime >= 365
    				THEN yreal_outtore_qty / 365
    				WHEN saletime < 365
    				THEN real_outtore_qty / datediff(sysdate( - 1), oldsaletime)
    				ELSE 0
    			end), 2) AS avg_year_sellnum, --年日均销量
    	1 AS yn, --删除标识 1为没删,0为删除
    	'plumber' AS create_pin, --创建人
    	'plumber' AS update_pin, --更新人
    	current_timestamp AS create_time, --创建时间
    	current_timestamp AS update_time, --更新时间
    	current_timestamp AS ts --时间戳
    FROM
    	(
    		SELECT
    			seller_id,
    			seller_name,
    			dept_id,
    			dept_name,
    			warehouse_id,
    			warehouse_name,
    			goods_id,
    			goods_no,
    			goods_name,
    			datediff(sysdate( - 1), min(to_date(create_time))) AS saletime, --
    			min(to_date(create_time)) AS oldsaletime, --
    			sum(real_outtore_qty) AS real_outtore_qty, --
    			sum(
    				case
    					WHEN create_time >= date_sub(sysdate( - 1), 365)
    					THEN real_outtore_qty
    					ELSE 0
    				end) AS yreal_outtore_qty --
    		FROM
    			(
    				SELECT
    					main.seller_id,
    					main.seller_name,
    					main.dept_id,
    					main.dept_name,
    					main.warehouse_id,
    					case
    						when warehouse.warehouse_name is not null
    						then warehouse.warehouse_name
    						else main.warehouse_name
    					end warehouse_name,
    					item.create_time, --
    					item.goods_id,
    					item.goods_no,
    					item.goods_name,
    					item.real_outtore_qty AS real_outtore_qty
    				FROM
    					(
    						SELECT
    							so_no,
    							seller_id,
    							seller_no,
    							seller_name,
    							dept_id,
    							dept_no,
    							trim(dept_name) as dept_name,
    							warehouse_id,
    							warehouse_no,
    							warehouse_name
    						FROM
    							fdm.fdm_eclp_so1_so_main_chain
    						WHERE
    							start_date <= sysdate( - 1)
    							and end_date > sysdate( - 1)
    							AND seller_no in
    							(
    								select seller_no from app.app_basic_dashboard_goods_seller
    							)
    							AND
    							(
    								parent_id = cast(substring(so_no, 4) AS bigint)
    								OR parent_id is NULL
    							)
    							AND so_status <> '10056'
    							AND so_status <> '10009'
    							AND so_status <> '10028'
    							AND so_status <> '10060'
    					)
    					main
    				JOIN
    					(
    						SELECT
    							so_id,
    							goods_id,
    							goods_no,
    							goods_name,
    							dept_id,
    							sum(nvl(apply_outstore_qty, 0)) AS apply_outstore_qty,
    							sum(
    								case
    									WHEN nvl(real_outtore_qty, 0) = 0
    										and nvl(apply_outstore_qty, 0) > 0
    									THEN nvl(apply_outstore_qty, 0)
    									ELSE nvl(real_outtore_qty, 0)
    								end) AS real_outtore_qty,
    							min(create_time) as create_time
    						FROM
    							fdm.fdm_eclp_so1_so_item_chain
    						WHERE
    							dt >= date_sub(sysdate( - 1), 365)
    						GROUP BY
    							so_id,
    							goods_id,
    							goods_no,
    							goods_name,
    							dept_id
    					)
    					item
    				ON
    					substring(main.so_no, 4) = item.so_id
    				LEFT JOIN
    					(
    						SELECT
    							warehouse_no,
    							warehouse_name
    						from
    							app.app_log_scm_ka_warehouse wh1
    						left join
    							(
    								select distinct
    									dim_area_id,
    									dim_area_name
    								from
    									dim.dim_supp_report_area_province
    							)
    							wh2
    						on
    							trim(wh1.org_name) = trim(wh2.dim_area_name)
    						GROUP BY
    							org_id,
    							wh2.dim_area_id,
    							org_name,
    							warehouse_no,
    							warehouse_name,
    							province_id,
    							province_name,
    							city_id,
    							city_name
    					)
    					warehouse ON main.warehouse_no = warehouse.warehouse_no
    			)
    			p
    		GROUP BY
    			seller_id,
    			seller_name,
    			dept_id,
    			dept_name,
    			warehouse_id,
    			warehouse_name,
    			goods_id,
    			goods_no,
    			goods_name
    	)
    	q
        
                 
    """
    
    ht.exec_sql(schema_name = 'app', table_name = 'app_basic_dashboard_goods_avg_year_sellnum', sql = sql1, merge_flag = True) 
    

    3、中转表

    #!/usr/bin/env python3
    ################################################################
    # AUTHOR:         wn
    # CREATED TIME:   2018-08-09
    # MODIFIED BY:    
    # MODIFTED TIME:  
    # REVIEWED BY:    
    # REVIEWED TIME:  
    # COMMENTS: goods
    
    ################################################################
    #===============================================================================
    #  FILE: exe_app_basic_goods_stock_num_daily_da_d.py
    #  USAGE: ./exe_app_basic_goods_stock_num_daily_da_d.py
    #  SRC_TABLE: 
    #  TGT_TABLE: app_basic_goods_stock_num_daily_da
    #===============================================================================
    import sys
    import os
    import time
    import datetime
    import logging 
    import calendar
    
    sys.path.append(os.getenv('HIVE_TASK'))
    from HiveTask import HiveTask
    ht = HiveTask()
    today = ht.oneday(1)[0:10]
    yesterday  = ht.oneday(0)[0:10] 
    
    
    sql1 = """
    use app;
    	insert overwrite table app.app_basic_dashboard_goods_sale_predict_daily_tem partition
    	(
    	   dt = '"""+yesterday+"""'
    	) 
    	select
    	c.seller_id, --商家编号
    	c.seller_name, --商家名称
    	c.dept_id, --事业部id
    	c.dept_no, --事业部编号
    	c.dept_name, --事业部名称
    	c.goods_id, --商品id
    	c.goods_no, --商品编号
    	c.goods_name, --商品名称
    	c.warehouse_id, --入仓id
    	c.warehouse_no, --入仓编号
    	c.warehouse_name, --入仓名称
    	h.loc_city_name as in_warehouse_city, --入仓城市
    	case
    		when d.satisfy_alpha is null
    		then n.satisfyalpha
    		else d.satisfy_alpha
    	end as satisfy_alpha, -- 出仓服务水平c (basis)
    	case
    		when d.safe_stock_days is null
    		then n.safetydays
    		else d.safe_stock_days
    	end as safe_stock_days, -- 安全库存天数(basis)
    	case
    		when d.alt is null
    		then n.alt
    		else d.alt
    	end as alt, -- 出仓alt(小时)(basis)
    	case
    		when j.totaltime is null
    		then n.vlt
    		else j.totaltime
    	end as vlt, --运输时间(basis)
    	f.in_stock_safety_num as in_stock_safety_num, --安全库存(计划调拨表取数)
    	case
    		when d.target_stock_days is null
    		then n.targetdays
    		else d.target_stock_days
    	end as target_stock_days, -- 目标库存天数(basis)
    	case
    		when d.bp is null
    		then n.bp
    		else d.bp
    	end as BP, -- BP
    	f.out_warehouse_no as out_warehouse_no, --配出仓编码
    	f.out_warehouse_name as out_warehouse_name, --配出仓名称
    	i.loc_city_name as out_warehouse_city, --入仓城市
    	f.in_stock_max_num as in_stock_max_num, --目标库存(计划调拨表取数)
    	case
    		when split(g.sales_week_detail, ',') [6] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [6]
    	end as bef_sales_1d, --T-1日销量(逆向)
    	case
    		when split(g.sales_week_detail, ',') [5] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [5]
    	end as bef_sales_2d, --T-2日销量
    	case
    		when split(g.sales_week_detail, ',') [4] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [4]
    	end as bef_sales_3d, --T-3日销量
    	case
    		when split(g.sales_week_detail, ',') [3] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [3]
    	end as bef_sales_4d, --T-4日销量
    	case
    		when split(g.sales_week_detail, ',') [2] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [2]
    	end as bef_sales_5d, --T-5日销量
    	case
    		when split(g.sales_week_detail, ',') [1] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [1]
    	end as bef_sales_6d, --T-6日销量
    	case
    		when split(g.sales_week_detail, ',') [0] is NULL
    		then '0'
    		else split(g.sales_week_detail, ',') [0]
    	end as bef_sales_7d, --T-7日销量
    	case
    		when g.sales_14d is NULL
    		then '0'
    		else g.sales_14d
    	end as in_stock_sales_14d, --14日销量
    	case
    		when g.sales_28d is NULL
    		then '0'
    		else g.sales_28d
    	end as in_stock_sales_28d, --28日销量
    	case
    		when split(g.predict_sales_week_detail, ',') [0] is NULL
    			and m.avg_year_sellnum is NULL --都空为0
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [0] is NULL
    			and m.avg_year_sellnum is not NULL --没有预测值,按销量平均值计
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [0] --预测值计
    	end as predict_sales_1d, --T+1日预测销量(正向)
    	case
    		when split(g.predict_sales_week_detail, ',') [1] is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [1] is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [1]
    	end as predict_sales_2d, --T+2日预测销量
    	case
    		when split(g.predict_sales_week_detail, ',') [2] is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [2] is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [2]
    	end as predict_sales_3d, --T+3日预测销量
    	case
    		when split(g.predict_sales_week_detail, ',') [3] is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [3] is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [3]
    	end as predict_sales_4d, --T+4日预测销量
    	case
    		when split(g.predict_sales_week_detail, ',') [4] is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [4] is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [4]
    	end as predict_sales_5d, --T+5日预测销量
    	case
    		when split(g.predict_sales_week_detail, ',') [5] is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [5] is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [5]
    	end as predict_sales_6d, --T+6日预测销量
    	case
    		when split(g.predict_sales_week_detail, ',') [6] is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when split(g.predict_sales_week_detail, ',') [6] is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum)
    		else split(g.predict_sales_week_detail, ',') [6]
    	end as predict_sales_7d, --T+7日预测销量
    	case
    		when g.predict_sales_14d is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when g.predict_sales_14d is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum * 14)
    		else g.predict_sales_14d
    	end as in_stock_predict_sales_14d, --14日预测销量
    	case
    		when g.predict_sales_28d is NULL
    			and m.avg_year_sellnum is NULL
    		then '0'
    		when g.predict_sales_28d is NULL
    			and m.avg_year_sellnum is not NULL
    		then round(m.avg_year_sellnum * 28)
    		else g.predict_sales_28d
    	end as in_stock_predict_sales_28d, --28日预测销量
    	1 AS yn, --删除标识 1为没删,0为删除
    	'plumber' AS create_pin, --创建人
    	'plumber' AS update_pin, --更新人
    	current_timestamp AS create_time, --创建时间
    	current_timestamp AS update_time, --更新时间
    	current_timestamp AS ts --时间戳
    from
    	(
    		SELECT
    			*
    		FROM
    			(
    				SELECT
    					id,
    					goods_id,
    					goods_no,
    					goods_name,
    					seller_id,
    					seller_no,
    					trim(seller_name) as seller_name, --去除空格
    					dept_id,
    					dept_no,
    					trim(dept_name) as dept_name,
    					warehouse_no,
    					warehouse_id,
    					warehouse_name,
    					update_time,
    					create_time,
    					row_number() over(partition by goods_id, seller_no, warehouse_no ORDER BY update_time desc, create_time desc) AS num --去重
    				FROM
    					fdm.fdm_eclp_stock1_saleable_warehouse_stock_chain
    				WHERE
    					dp = 'ACTIVE'
    					AND yn = 1
    					AND seller_no in
    					(
    						select seller_no from app.app_basic_dashboard_goods_seller
    					)
    			)
    			s1
    		WHERE
    			s1.num = 1
    	)
    	c
    left join fdm.fdm_log_scm_ka_allot_sys_pre_allot d --参数表
    on
    	c.dept_no = d.dept_no
    	and c.warehouse_no = d.warehouse_no
    	and c.goods_no = d.goods_id
    	and d.yn = 1
    	and d.dt = sysdate( - 1)
    left join
    	(
    		select
    			*
    		from
    			fdm.fdm_log_scm_ka_allot_allot_plan --调拨计划表 (注意去重)
    		where
    			id in
    			(
    				select
    					max(e.id)
    				from
    					fdm.fdm_log_scm_ka_allot_allot_plan e
    				where
    					e.dt = sysdate( - 1)
    				group by
    					e.dept_name,
    					e.in_warehouse_no,
    					e.goods_no
    			)
    			and dt = sysdate( - 1)
    	)
    	f 
    on
    	f.dept_no = c.dept_no
    	and f.in_warehouse_no = c.warehouse_no
    	and f.goods_no = c.goods_no
    left join app.app_ka_predict_sales_da g ---线下门店销量预测表
    on
    	c.dept_no = g.dept_no
    	and c.goods_no = g.goods_no
    	and c.warehouse_no = g.warehouse_no
    	and g.dt = sysdate( - 1)
    left join dim.dim_wms_store h --库房维表,取出入仓所属城市
    on
    	c.warehouse_name = h.dim_store_name
    left join dim.dim_wms_store i --库房维表,取出仓所属城市
    on
    	f.out_warehouse_name = i.dim_store_name
    left join
    	(
    		select
    			startcityid,
    			startcityname,
    			endcityid,
    			endcityname,
    			totalaging,
    			totaltime,
    			yn
    		from
    			(
    				select
    					case
    						when
    							(
    								startprovinceid in(1, 2, 3, 4)
    							)
    						then startprovinceid
    						else startcityid
    					end as startcityid,
    					case
    						when
    							(
    								startprovinceid in(1, 2, 3, 4)
    							)
    						then concat(startprovincename, '市')
    						else startcityname
    					end as startcityname,
    					case
    						when
    							(
    								endprovinceid in(1, 2, 3, 4)
    							)
    						then endprovinceid
    						else endcityid
    					end as endcityid,
    					case
    						when
    							(
    								endprovinceid in(1, 2, 3, 4)
    							)
    						then concat(endprovincename, '市')
    						else endcityname
    					end as endcityname,
    					ceil(avg(totalaging)) as totalaging,
    					ceil(avg(totaltime)) as totaltime,
    					max(1) as yn
    				from
    					fdm.fdm_staticroutebatchgenerate_staticroutebatchgenerate_chain
    				where
    					dp = 'ACTIVE'
    					and yn = 1
    				group by
    					case
    						when
    							(
    								startprovinceid in(1, 2, 3, 4)
    							)
    						then startprovinceid
    						else startcityid
    					end,
    					case
    						when
    							(
    								startprovinceid in(1, 2, 3, 4)
    							)
    						then concat(startprovincename, '市')
    						else startcityname
    					end,
    					case
    						when
    							(
    								endprovinceid in(1, 2, 3, 4)
    							)
    						then endprovinceid
    						else endcityid
    					end,
    					case
    						when
    							(
    								endprovinceid in(1, 2, 3, 4)
    							)
    						then concat(endprovincename, '市')
    						else endcityname
    					end
    			)
    			route
    	)
    	j --vlt (青龙路由,通过城市名称,获取vlt)
    on
    	h.loc_city_name = j.startcityname
    	and i.loc_city_name = j.endcityname
    left join
    	(
    		select
    			*
    		from
    			(
    				SELECT
    					seller_id,
    					warehouse_id,
    					goods_id,
    					avg_year_sellnum,
    					dt,
    					row_number() over(partition by goods_id, seller_id, warehouse_id ORDER BY avg_year_sellnum desc) AS num
    				FROM
    					app.app_basic_dashboard_goods_avg_year_sellnum --KA商品销量年日均值(去重)
    				WHERE
    					dt = sysdate( - 1)
    			)
    			s2
    		where
    			s2.num = 1
    	)
    	m --获取销量年日均值
    on
    	c.seller_id = m.seller_id
    	and c.warehouse_id = m.warehouse_id
    	and c.goods_id = m.goods_id
    	and m.dt = sysdate( - 1)
    join app.app_basic_dashboard_goods_seller n
    on
    	c.seller_id = n.seller_id
                 
    """
    
    ht.exec_sql(schema_name = 'app', table_name = 'app_basic_dashboard_goods_sale_predict_daily_tem', sql = sql1, merge_flag = True) 
    

     4、KA接口表

    #!/usr/bin/env python3
    ################################################################
    # AUTHOR:         wn
    # CREATED TIME:   2018-08-09
    # MODIFIED BY:    
    # MODIFTED TIME:  
    # REVIEWED BY:    
    # REVIEWED TIME:  
    # COMMENTS: goods
    
    ################################################################
    #===============================================================================
    #  FILE: exe_app_basic_dashboard_goods_sale_predict_daily.py
    #  USAGE: ./exe_app_basic_dashboard_goods_sale_predict_daily.py
    #  SRC_TABLE: 
    #  TGT_TABLE: app.app_basic_dashboard_goods_sale_predict_daily
    #===============================================================================
    import sys
    import os
    import time
    import datetime
    import logging 
    import calendar
    
    sys.path.append(os.getenv('HIVE_TASK'))
    from HiveTask import HiveTask
    ht = HiveTask()
    today = ht.oneday(1)[0:10]
    yesterday  = ht.oneday(0)[0:10] 
    
    
    sql1 = """
    use app;
    	insert overwrite table app.app_basic_dashboard_goods_sale_predict_daily partition
    	(
    	   dt = '"""+yesterday+"""'
    	) 
    	select
    	k.seller_id, --商家编号
    	k.seller_name, --商家名称
    	k.dept_id, --事业部id
    	k.dept_no, --事业部编号
    	k.dept_name, --事业部名称
    	k.goods_id, --商品id
    	k.goods_no, --商品编号
    	k.goods_name, --商品名称
    	k.warehouse_id, --入仓id
    	k.warehouse_no, --入仓编号
    	k.warehouse_name, --入仓名称
    	k.in_warehouse_city, --入仓城市
    	k.satisfy_alpha, -- 出仓服务水平c (basis)
    	k.safe_stock_days, -- 安全库存天数(basis)
    	k.alt, -- 出仓alt(小时)(basis)
    	k.vlt, --运输时间
    	case
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			>= 0
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 1
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) * m.predict_sales_1d)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 1
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 2
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.predict_sales_1d + m.predict_sales_2d) / 2)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 2
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 3
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.predict_sales_1d + m.predict_sales_2d + m.predict_sales_3d) / 3)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 3
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 4
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.predict_sales_1d + m.predict_sales_2d + m.predict_sales_3d + m.predict_sales_4d) / 4)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 4
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 5
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.predict_sales_1d + m.predict_sales_2d + m.predict_sales_3d + m.predict_sales_4d + m.predict_sales_5d) / 5)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 5
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 6
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.predict_sales_1d + m.predict_sales_2d + m.predict_sales_3d + m.predict_sales_4d + m.predict_sales_5d + m.predict_sales_6d) / 6)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 6
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 7
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.predict_sales_1d + m.predict_sales_2d + m.predict_sales_3d + m.predict_sales_4d + m.predict_sales_5d + m.predict_sales_6d + m.predict_sales_7d) / 7)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 7
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			<= 14
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.in_stock_predict_sales_14d) / 14)
    		when k.in_stock_safety_num is null
    			and
    			(
    				m.safe_stock_days + m.alt / 24 + m.vlt / 24
    			)
    			> 14
    		then round(m.satisfy_alpha *(m.safe_stock_days + m.alt / 24 + m.vlt / 24) *(m.in_stock_predict_sales_28d) / 28)
    		else round(k.in_stock_safety_num)
    	end as in_stock_safety_num, --安全库存(复杂公式见prd)
    	k.target_stock_days, -- 目标库存天数
    	k.BP, -- BP
    	k.out_warehouse_no, --配出仓编码
    	k.out_warehouse_name, --配出仓名称
    	k.out_warehouse_city, --出仓城市
    	case
    		when k.in_stock_max_num is null
    		then round(m.satisfy_alpha * m.target_stock_days * m.in_stock_predict_sales_14d / 14 + m.BP) --目标库存天数10,所以没有判断条件
    		else round(k.in_stock_max_num)
    	end as in_stock_max_num, --目标库存
    	k.bef_sales_1d, --T-1日销量(逆向)
    	k.bef_sales_2d, --T-2日销量
    	k.bef_sales_3d, --T-3日销量
    	k.bef_sales_4d, --T-4日销量
    	k.bef_sales_5d, --T-5日销量
    	k.bef_sales_6d, --T-6日销量
    	k.bef_sales_7d, --T-7日销量
    	k.in_stock_sales_14d, --14日销量
    	k.in_stock_sales_28d, --28日销量
    	k.predict_sales_1d, --T+1日预测销量(正向)
    	k.predict_sales_2d, --T+2日预测销量
    	k.predict_sales_3d, --T+3日预测销量
    	k.predict_sales_4d, --T+4日预测销量
    	k.predict_sales_5d, --T+5日预测销量
    	k.predict_sales_6d, --T+6日预测销量
    	k.predict_sales_7d, --T+7日预测销量
    	k.in_stock_predict_sales_14d, --14日预测销量
    	k.in_stock_predict_sales_28d, --28日预测销量
    	1 AS yn, --删除标识 1为没删,0为删除
    	'plumber' AS create_pin, --创建人
    	'plumber' AS update_pin, --更新人
    	current_timestamp AS create_time, --创建时间
    	current_timestamp AS update_time, --更新时间
    	current_timestamp AS ts --时间戳
    from
    	(
    		select
    			*
    		from
    			app.app_basic_dashboard_goods_sale_predict_daily_tem
    		where
    			dt = sysdate( - 1)
    	)
    	k
    join
    	(
    		select
    			*
    		from
    			app.app_basic_dashboard_goods_sale_predict_daily_tem
    		where
    			dt = sysdate( - 1)
    	)
    	m
    on
    	k.dept_no = m.dept_no
    	and k.goods_no = m.goods_no
    	and k.warehouse_no = m.warehouse_no      
                 
    """
    
    ht.exec_sql(schema_name = 'app', table_name = 'app_basic_dashboard_goods_sale_predict_daily', sql = sql1, merge_flag = True) 
    
  • 相关阅读:
    测试篇 尝了一下net5.0桌面开发
    日志篇 vs的文本替换,剔除引号保留数字 将vs2019更新之后无法用ctrl+d
    测试篇 使用 nuget.exe CLI 创建 nuget 包
    日志篇 博客园的下方的女孩透明的,带点击声音的
    测试篇 c#文件类型关联启动程序
    数学篇 求两条直线的交点,说明过程.
    日志篇 原生git笔记
    测试篇 winform Anchor 怎么临时取消关联,窗口边界和控件关联
    cad.net dll动态加载,插件式架构,在dll查找引用了的dll,查找dll依赖,dll热插拔,加载dll运行出错.
    cad.net 图元反应器,图元事件,要加在提交数据库之后哟
  • 原文地址:https://www.cnblogs.com/ruo-li-suo-yi/p/9504101.html
Copyright © 2011-2022 走看看