Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20446 Accepted Submission(s):
12266
Problem Description
The inversion number of a given number sequence a1, a2,
..., an is the number of pairs (ai, aj) that satisfy i < j and ai >
aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case
consists of two lines: the first line contains a positive integer n (n <=
5000); the next line contains a permutation of the n integers from 0 to
n-1.
Output
For each case, output the minimum inversion number on a
single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
题目说是一个环
那么每转一次,就相当于把第一个数放到最后面
考虑第一个数对原有答案的贡献是a[1]-1,也就是小于它的个数(数据是1到n的排列)
最后一个数对原答案的贡献相反
那么移动后当前逆序对数就要减去比第一个数小的个数,再加上比它大的数的个数
这样我们求出一次移动后的逆序对数
这时候我们发现下一次移动直接修改答案就好
推出式子ans+=n-a[i]-(a[i]-1)
代码是自己写的 。
#include <algorithm> #include <cstdio> #define N 5500 using namespace std; struct node { int mid,l,r,dis; node *left,*right; node() { left=right=NULL; mid=0;dis=0; } }*root; int data[N],a[N],n; void build(node *&k,int l,int r) { k=new node; k->l=l;k->r=r; k->mid=(l+r)>>1; if(l==r) {k->dis=0;return ;} build(k->left,l,k->mid); build(k->right,k->mid+1,r); } void change(node *&k,int t) { if(k->l==k->r) {k->dis++;return;} if(k->mid>=t) change(k->left,t); else change(k->right,t); k->dis=k->left->dis+k->right->dis; } int query(node *&k,int l,int r) { if(k->l==l&&k->r==r) return k->dis; if(l>k->mid) return query(k->right,l,r); else if(r<=k->mid) return query(k->left,l,r); else return query(k->left,l,k->mid)+query(k->right,k->mid+1,r); } int main() { for(;scanf("%d",&n)!=EOF;) { root=new node; build(root,0,n); int ans,sum=0; for(int i=0;i<n;i++) { scanf("%d",&a[i]); ans=sum+=query(root,a[i]+1,n); change(root,a[i]); } for(int i=0;i<n;i++) { sum+=n-a[i]-a[i]-1; ans=min(ans,sum); } printf("%d ",ans); } return 0; }