zoukankan      html  css  js  c++  java
  • hdu 1787 GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3717    Accepted Submission(s): 1650


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem:
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     
    Author
    lcy
     
    Source
     
    题目大意 : m∈(0,N)  求gcd(m,n) >1 的个数 
    裸欧拉函数 减去1 因为1没有贡献
    #include <ctype.h>
    #include <cstdio>
    void read(int &x)
    {
        x=0;bool f=0;register char ch=getchar();
        for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=1;
        for(; isdigit(ch);ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
        x=f?(~x)+1:x;
    }
    int k,a=1;
    int getphi(int n)
    {
        int ans=n;
        if(n%2==0)
        {
            while(n%2==0) n/=2;
            ans/=2;
        }
        for(int i=3;i*i<=n;i+=2)
        {
            if(n%i==0)//这一句再忘写就剁手!!!
            {
                while(n%i==0) n/=i;
                ans=ans/i*(i-1);
            }
        }
        if(n>1) ans=ans/n*(n-1);
        return ans;
    }
    int main()
    {
        for(;a;)
        {
            read(k);
            if(!k) break;
            int ans=k-getphi(k)-1;
            printf("%d
    ",ans);
        }
        return 0;
    }
    我们都在命运之湖上荡舟划桨,波浪起伏着而我们无法逃脱孤航。但是假使我们迷失了方向,波浪将指引我们穿越另一天的曙光。
  • 相关阅读:
    flexlm破解入门文献列表
    【分享】SRIO错误的基本判决
    LDO功耗计算
    CT128M4SSD1升级固件3种方法方法
    SYSBIOS中malloc和Memory_alloc的区别.doc
    VID = 058F PID = 6387 可用的量产工具
    Debian 6 nvidia显卡驱动安装
    Java Volatile的双重含义
    Windows下PHP使用Apache的mod_fcgid模块安装及配置
    Flask之基于route装饰器的路由系统(源码阅读解析)
  • 原文地址:https://www.cnblogs.com/ruojisun/p/7304881.html
Copyright © 2011-2022 走看看