zoukankan      html  css  js  c++  java
  • POJ 2417 Discrete Logging

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 6190   Accepted: 2746

    Description

    Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that 
        B
    L
     == N (mod P)

    Input

    Read several lines of input, each containing P,B,N separated by a space.

    Output

    For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

    Sample Input

    5 2 1
    5 2 2
    5 2 3
    5 2 4
    5 3 1
    5 3 2
    5 3 3
    5 3 4
    5 4 1
    5 4 2
    5 4 3
    5 4 4
    12345701 2 1111111
    1111111121 65537 1111111111
    

    Sample Output

    0
    1
    3
    2
    0
    3
    1
    2
    0
    no solution
    no solution
    1
    9584351
    462803587
    

    Hint

    The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states 
       B
    (P-1)
     == 1 (mod P)

    for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m 
       B
    (-m)
     == B
    (P-1-m)
     (mod P) .

    Source

     

    BSGS模板 

    屠龙宝刀点击就送

    #include <cstdio>
    #include <cmath>
    #include <map>
    using namespace std;
    map<long long,int>q;
    int P,B,N;
    long long ans;
    bool flag=false;
    long long ksm(int m,int n,int ha)
    {
        long long r=1,base=m;
        for(;n;n>>=1)
        {
            if(n&1)
                r=(r*base)%ha;
            base=(base*base)%ha;
        }
        return r;
    }
    void bsgs(long long y,long long z,long long p)
    {
        q.clear();
        int m=(int)ceil(sqrt((double)p));//防止编译错误
        flag=false;
        q[1]=m+1;
        long long a=1;
        for(int i=1;i<m;i++)
        {
            a=a*y%p;
            if(!q[a]) q[a]=i;
        }
        long long inv=1;
        a=ksm(y,p-m-1,p);
        for(int k=0;k<m;k++)
        {
            long long an=z*inv%p;
            if(q[an])
            {
                int v=q[an];
                if(v==m+1) {ans=k*m;flag=true;return;}
                else {ans=k*m+v;flag=true;return ;}
            }
            inv=inv*a%p;
        }
    }
    int main()
    {
        for(;scanf("%d%d%d",&P,&B,&N)!=EOF;)
        {
            if(B%P==0&&N==0) printf("1
    ");
            else if(B%P==0) printf("no solution
    ");
            else
            {
                bsgs(B,N,P);
                if(!flag) printf("no solution
    ");
                else printf("%lld
    ",ans);
            }
        }
        return 0;
    }
    我们都在命运之湖上荡舟划桨,波浪起伏着而我们无法逃脱孤航。但是假使我们迷失了方向,波浪将指引我们穿越另一天的曙光。
  • 相关阅读:
    SpringBoot-13-简单整合Dubbo
    SpringBoot-12-整合Redis
    SpringBoot-11-任务
    SpringBoot-10-Swagger
    SpringBoot-09-Apche Shiro
    SpringBoot-08-Spring Security
    五十七-代码审计-JAVA项目框架类漏洞分析报告
    五十六:代码审计-JAVA项目Filter过滤器及XSS挖掘
    五十五:代码审计-JAVA项目注入上传搜索或插件挖掘
    五十四:代码审计-TP5框架审计写法分析及代码追踪
  • 原文地址:https://www.cnblogs.com/ruojisun/p/7305029.html
Copyright © 2011-2022 走看看