zoukankan      html  css  js  c++  java
  • Reading comprehension HDU

    for(i=1;i<=n;i++)
    {
          if(i&1)ans=(ans*2+1)%m;
          else ans=ans*2%m;
    } 

    给定n,m。让你用O(log(n))以下时间算出ans。

    打表,推出 ans[i] = 2^(i-1) + f[i-2]

    故 i奇数:ans[i] = 2^(i-1) + 2^(i-3) ... + 1;

      i偶数:ans[i] = 2^(i-1) + 2^(i-3) ... + 2;

    故可以用等比数列求和公式。

    公式涉及除法。我也没弄懂为啥不能用逆元,貌似说是啥逆元可能不存在。

    所以a/b % m == a%(b*m) / b 直接搞了。

    #include <cstdio>
    #include<iostream>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include<vector>
    typedef long long LL;
    
    LL quick_pow(LL a, LL b, LL m)
    {
        LL ans = 1, base = a % m;
        while(b)
        {
            if (b & 1) ans = (ans * base) % m;
            base = (base * base) % m;
            b >>= 1;
        }
        return ans;
    }
    
    int main()
    {
        LL n, m;
    
        while(~scanf("%lld%lld", &n, &m))
        {
            LL a1 = (n % 2) ? 1 : 2;
            LL sum = a1 * (quick_pow(4, (n+1)/2, 3*m) - 1);
            LL ans = (sum % (3 * m)) / 3;
            printf("%lld
    ", ans);
        }
    }

    第一次学矩阵快速幂,再贴个矩阵快速幂的板子。

    f[n] = f[n-1] + 2 * f[n-2] + 1,故可以构造矩阵

    f[n-2] f[n-1] 1        0 2 0             f[n-1]   f[n]  1
    0      0      0        1 1 0       =      0       0     0
    0      0      0        0 1 1              0       0     0

    模板来源:https://blog.csdn.net/u012860063/article/details/39123605

    #include <cstdio>
    #include<iostream>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include<vector>
    typedef long long LL;
    
    struct Matrix
    {
        LL m[5][5];
    } I, A, B, T;
    
    LL a,b,n, mod;
    int ssize = 3;
    
    Matrix Mul(Matrix a,Matrix b)
    {
        int i,j,k;
        Matrix c;
        for (i = 1; i <= ssize; i++)
            for(j = 1; j <= ssize; j++)
            {
                c.m[i][j]=0;
                for(k = 1; k <= ssize; k++)
                {
                    c.m[i][j]+=(a.m[i][k]*b.m[k][j]);
                    c.m[i][j]%=mod;
                }
            }
    
        return c;
    }
    
    Matrix quickpagow(int n)
    {
        Matrix m = A, b = I;
        while(n)
        {
            if(n & 1) b = Mul(b, m);
            n >>= 1;
            m = Mul(m, m);
        }
        return b;
    }
    
    int main()
    {
        while(~scanf("%lld%lld",&n, &mod))
        {
            memset(I.m,0,sizeof(I.m));
            memset(A.m,0,sizeof(A.m));
            memset(B.m,0,sizeof(B.m));
    
            for(int i = 1; i <= ssize; i++) I.m[i][i] = 1;
            //I是单位矩阵
    
            B.m[1][1] = 1, B.m[1][2] = 2, B.m[1][3] = 1;
            A.m[1][2] = 2;
            A.m[2][1] = A.m[2][2] = A.m[3][2] = A.m[3][3] = 1;
    
            if(n == 1) printf("%lld
    ",1 % mod);
            else if(n == 2) printf("%lld
    ",2 % mod);
            else
            {
                T = quickpagow(n-2);
                T = Mul(B, T);
                printf("%lld
    ",T.m[1][2] % mod);
            }
        }
    }
  • 相关阅读:
    php javascript
    在线支付接口之PHP支付宝接口开发
    作业9 最长公共子序列
    第十二章 税制的设计
    第十一章 公共物品和公共资源
    第十章 外部性
    第九章 应用:国际贸易
    作业8 矩阵乘法链
    第八章 应用:赋税的代价
    第七章 消费者、生产者与市场效率
  • 原文地址:https://www.cnblogs.com/ruthank/p/10575637.html
Copyright © 2011-2022 走看看