zoukankan      html  css  js  c++  java
  • BZOJ

    【题目大意】

        在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着。一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目。
    两个国家看成是AB两国,现在是两个国家的描述:
        1.A国:每个人都有一个友善值,当两个A国人的友善值a、b,如果a xor b mod 2=1,那么这两个人都是朋友,否则不是;
        2.B国:每个人都有一个友善值,当两个B国人的友善值a、b,如果a xor b mod 2=0或者 (a or b)化成二进制有奇数个1,那么两个人是朋友,否则不是朋友;
        3.A、B两国之间的人也有可能是朋友,数据中将会给出A、B之间“朋友”的情况。
        4.在AB两国,朋友圈的定义:一个朋友圈集合S,满足S∈A∪ B,对于所有的i,j∈ S,i和j是朋友。

        由于落后的古代,没有电脑这个也就成了每年最大的难题,而你能帮他们求出最大朋友圈的人数吗?

    【题目解析】

    A国人相互为朋友的只有可能是奇数和偶数。

    所以S中A国人员可能:无、1奇数、1偶数、1奇数+1偶数。

    B国人相互为朋友的可能是奇数和奇数、偶数和偶数、部份奇数和偶数。

    所以B国人朋友关系的补图只有可能是奇数和偶数。是一个二分图。

    补图的最大独立集就是是原图中的最大团。

    二分图上的最大独立集 = 点数 - 最大匹配。

    所以可以枚举上述情况,看选哪个A国人,然后把B国中的、被选择A国人的朋友中建补图,求最大匹配。

    看众多大佬用时间戳代替memset。我不会。

    #include <bits/stdc++.h>
    #define FOPI freopen("in.txt", "r", stdin);
    #define FOPO freopen("out.txt", "w", stdout);
    using namespace std;
    typedef long long LL;
    const int maxn = 3000 + 1000;
    int x, y;
    int lnk[maxn], vis[maxn], del[maxn];
    int a[maxn], b[maxn];
    vector<int> v[maxn], odd, even;
    vector<int> frd[maxn];
    int A, B, m;
    
    void build(int x, int y)
    {
        v[x].push_back(y), v[y].push_back(x);
    }
    
    bool check(int x, int y)
    {
        if ((x ^ y) % 2 == 0) return true;
        int cnt = 0, tmp = x | y;
        while(tmp)
        {
            cnt += tmp % 2;
            tmp >>= 1;
        }
        return cnt % 2;
    }
    
    bool dfs(int k)
    {
        int sz = v[k].size();
        for (int i = 0; i < sz; i++)
        {
            if (!vis[v[k][i]] && del[v[k][i]])
            {
                vis[v[k][i]] = 1;
                if (lnk[v[k][i]] == -1 || dfs(lnk[v[k][i]]))
                {
                    lnk[v[k][i]] = k;
                    return true;
                }
            }
        }
        return false;
    }
    
    int hungary(int s = 0, int t = 0, int sum = 0)
    {
        int cnt = 0;
        memset(del, 0, sizeof(del));
        if (s) for (int i = 0; i < frd[s].size(); i++) del[frd[s][i]]++;
        if (t) for (int i = 0; i < frd[t].size(); i++) del[frd[t][i]]++;
    
        for (int i = 1; i <= B; i++) cnt += del[i] = del[i] == sum;
    
        for (int i = 1; i <= B; i++) v[i].clear();
    
        for (int i = 1; i <= B; i++)
        for (int j = i+1; j <= B; j++)
            if (del[i] && del[j] && !check(b[i], b[j])) build(i, j);
    
        int res = 0;
        memset(lnk, -1, sizeof(lnk));
        for (int i = 1; i <= B; i++)
        {
            memset(vis, 0, sizeof(vis));
            if (del[i] && dfs(i)) res++;
        }
        return cnt - res / 2;
    }
    
    
    int main()
    {
        //FOPI;
    
        scanf("%d%d%d", &A, &B, &m);
        for (int i = 1; i <= A; i++)
        {
            scanf("%d", &a[i]);
            if (a[i] % 2) odd.push_back(i); else even.push_back(i);
        }
    
        for (int i = 1; i <= B; i++) scanf("%d", &b[i]);
    
        for (int i = 1; i <= m; i++)
        {
            scanf("%d%d", &x, &y);
            frd[x].push_back(y);
        }
    
        int ans = hungary();
    
        for (int i = 0; i < odd.size(); i++) ans = max(ans, hungary(odd[i], 0, 1) + 1);
    
        for (int i = 0; i < even.size(); i++) ans = max(ans, hungary(even[i], 0, 1) + 1);
    
        for (int i = 0; i < odd.size(); i++)
            for (int j = 0; j < even.size(); j++)
                ans = max(ans, hungary(odd[i], even[j], 2) + 2);
    
        printf("%d
    ", ans);
    }
  • 相关阅读:
    matlab中figure 创建图窗窗口
    matlab中imread 从图形文件读取图像
    matlab中imfinfo 有关图形文件的信息
    matlab中bitshift 将位移动指定位数
    matlab中reshape 重构数组
    matlab中find 查找非零元素的索引和值
    比特数
    matlab中fseek 移至文件中的指定位置
    poj 1039 Pipe(几何基础)
    poj 1556 The Doors(线段相交,最短路)
  • 原文地址:https://www.cnblogs.com/ruthank/p/10604136.html
Copyright © 2011-2022 走看看