zoukankan      html  css  js  c++  java
  • Grafana 备份恢复教程

    原文链接:https://fuckcloudnative.io/posts/how-to-back-up-all-of-your-grafana-dashboards/

    目前我们 k8s 集群的 Grafana 使用 ceph 作为持久化存储,一但我将 Grafana 的 Deployment 删除重建之后,之前的所有数据都会丢失,重建的 PV 会映射到后端存储的新位置。万幸的是,我真的手欠重建了,还没有提前备份。。。万幸个鬼啊我。

    在我历经 250 分钟重建 Dashboard 之后,心里久久不能平静,一句 MMP 差点就要脱口而出。

    1. 低级方案

    再这样下去我真的要变成 250 了,这怎么能忍,立马打开 Google 研究了一把 Grafana 备份的各种骚操作,发现大部分备份方案都是通过 shell 脚本调用 Grafana 的 API 来导出各种配置。备份脚本大部分都集中在这个 gist 中:

    我挑选出几个比较好用的,大家也可以自行挑选其他的。

    导出脚本

    #!/bin/bash
    
    # Usage:
    #
    # export_grafana_dashboards.sh https://admin:REDACTED@grafana.dedevsecops.com
    
    create_slug () {
      echo "$1" | iconv -t ascii//TRANSLIT | sed -r s/[^a-zA-Z0-9]+/-/g | sed -r s/^-+|-+$//g | tr A-Z a-z
    }
    
    full_url=$1
    username=$(echo "${full_url}" | cut -d/ -f 3 | cut -d: -f 1)
    base_url=$(echo "${full_url}" | cut -d@ -f 2)
    folder=$(create_slug "${username}-${base_url}")
    
    mkdir "${folder}"
    for db_uid in $(curl -s "${full_url}/api/search" | jq -r .[].uid); do
      db_json=$(curl -s "${full_url}/api/dashboards/uid/${db_uid}")
      db_slug=$(echo "${db_json}" | jq -r .meta.slug)
      db_title=$(echo "${db_json}" | jq -r .dashboard.title)
      filename="${folder}/${db_slug}.json"
      echo "Exporting "${db_title}" to "${filename}"..."
      echo "${db_json}" | jq -r . > "${filename}"
    done
    echo "Done"
    

    这个脚本比较简单,直接导出了所有 Dashboard 的 json 配置,也没有标记目录信息,如果你用它导出的配置来恢复 Grafana,所有的 Dashboard 都会导入到 Grafana 的 General 目录下,不太友好。

    导入脚本

    grafana-dashboard-importer.sh

    #!/bin/bash
    #
    # add the "-x" option to the shebang line if you want a more verbose output
    #
    #
    OPTSPEC=":hp:t:k:"
    
    show_help() {
    cat << EOF
    Usage: $0 [-p PATH] [-t TARGET_HOST] [-k API_KEY]
    Script to import dashboards into Grafana
        -p      Required. Root path containing JSON exports of the dashboards you want imported.
        -t      Required. The full URL of the target host
        -k      Required. The API key to use on the target host
    
        -h      Display this help and exit.
    EOF
    }
    
    ###### Check script invocation options ######
    while getopts "$OPTSPEC" optchar; do
        case "$optchar" in
            h)
                show_help
                exit
                ;;
            p)
                DASH_DIR="$OPTARG";;
            t)
                HOST="$OPTARG";;
            k)
                KEY="$OPTARG";;
            ?)
              echo "Invalid option: -$OPTARG" >&2
              exit 1
              ;;
            :)
              echo "Option -$OPTARG requires an argument." >&2
              exit 1
              ;;
        esac
    done
    
    if [ -z "$DASH_DIR" ] || [ -z "$HOST" ] || [ -z "$KEY" ]; then
        show_help
        exit 1
    fi
    
    # set some colors for status OK, FAIL and titles
    SETCOLOR_SUCCESS="echo -en \033[0;32m"
    SETCOLOR_FAILURE="echo -en \033[1;31m"
    SETCOLOR_NORMAL="echo -en \033[0;39m"
    SETCOLOR_TITLE_PURPLE="echo -en \033[0;35m" # purple
    
    # usage log "string to log" "color option"
    function log_success() {
       if [ $# -lt 1 ]; then
           ${SETCOLOR_FAILURE}
           echo "Not enough arguments for log function! Expecting 1 argument got $#"
           exit 1
       fi
    
       timestamp=$(date "+%Y-%m-%d %H:%M:%S %Z")
    
       ${SETCOLOR_SUCCESS}
       printf "[%s] $1
    " "$timestamp"
       ${SETCOLOR_NORMAL}
    }
    
    function log_failure() {
       if [ $# -lt 1 ]; then
           ${SETCOLOR_FAILURE}
           echo "Not enough arguments for log function! Expecting 1 argument got $#"
           exit 1
       fi
    
       timestamp=$(date "+%Y-%m-%d %H:%M:%S %Z")
    
       ${SETCOLOR_FAILURE}
       printf "[%s] $1
    " "$timestamp"
       ${SETCOLOR_NORMAL}
    }
    
    function log_title() {
       if [ $# -lt 1 ]; then
           ${SETCOLOR_FAILURE}
           log_failure "Not enough arguments for log function! Expecting 1 argument got $#"
           exit 1
       fi
    
       ${SETCOLOR_TITLE_PURPLE}
       printf "|-------------------------------------------------------------------------|
    "
       printf "|%s|
    " "$1";
       printf "|-------------------------------------------------------------------------|
    "
       ${SETCOLOR_NORMAL}
    }
    
    if [ -d "$DASH_DIR" ]; then
        DASH_LIST=$(find "$DASH_DIR" -mindepth 1 -name *.json)
        if [ -z "$DASH_LIST" ]; then
            log_title "----------------- $DASH_DIR contains no JSON files! -----------------"
            log_failure "Directory $DASH_DIR does not appear to contain any JSON files for import. Check your path and try again."
            exit 1
        else
            FILESTOTAL=$(echo "$DASH_LIST" | wc -l)
            log_title "----------------- Starting import of $FILESTOTAL dashboards -----------------"
        fi
    else
        log_title "----------------- $DASH_DIR directory not found! -----------------"
        log_failure "Directory $DASH_DIR does not exist. Check your path and try again."
        exit 1
    fi
    
    NUMSUCCESS=0
    NUMFAILURE=0
    COUNTER=0
    
    for DASH_FILE in $DASH_LIST; do
        COUNTER=$((COUNTER + 1))
        echo "Import $COUNTER/$FILESTOTAL: $DASH_FILE..."
        RESULT=$(cat "$DASH_FILE" | jq '. * {overwrite: true, dashboard: {id: null}}' | curl -s -X POST -H "Content-Type: application/json" -H "Authorization: Bearer $KEY" "$HOST"/api/dashboards/db -d @-)
        if [[ "$RESULT" == *"success"* ]]; then
            log_success "$RESULT"
            NUMSUCCESS=$((NUMSUCCESS + 1))
        else
            log_failure "$RESULT"
            NUMFAILURE=$((NUMFAILURE + 1))
        fi
    done
    
    log_title "Import complete. $NUMSUCCESS dashboards were successfully imported. $NUMFAILURE dashboard imports failed.";
    log_title "------------------------------ FINISHED ---------------------------------";
    

    导入脚本需要目标机器上的 Grafana 已经启动,而且需要提供管理员 API Key。登录 Grafana Web 界面,打开 API Keys:

    新建一个 API Key,角色选择 Admin,过期时间自己调整:

    导入方式:

    $ ./grafana-dashboard-importer.sh -t http://<grafana_svc_ip>:<grafana_svc_port> -k <api_key> -p <backup folder>
    

    其中 -p 参数指定的是之前导出的 json 所在的目录。

    目前的方案痛点在于只能备份 Dashboard,不能备份其他的配置(例如,数据源、用户、秘钥等),而且没有将 Dashboard 和目录对应起来,即不支持备份 Folder。下面介绍一个比较完美的备份恢复方案,支持所有配置的备份恢复,简直不要太香。

    2. 高级方案

    更高级的方案已经有人写好了,项目地址是:

    该备份工具支持以下几种配置:

    • 目录
    • Dashboard
    • 数据源
    • Grafana 告警频道(Alert Channel)
    • 组织(Organization)
    • 用户(User)

    使用方法很简单,跑个容器就好了嘛,不过作者提供的 Dockerfile 我不是很满意,自己修改了点内容:

    FROM alpine:latest
    
    LABEL maintainer="grafana-backup-tool Docker Maintainers https://fuckcloudnative.io"
    
    ENV ARCHIVE_FILE ""
    
    RUN echo "@edge http://dl-cdn.alpinelinux.org/alpine/edge/community" >> /etc/apk/repositories; 
        apk --no-cache add python3 py3-pip py3-cffi py3-cryptography ca-certificates bash git; 
        git clone https://github.com/ysde/grafana-backup-tool /opt/grafana-backup-tool; 
        cd /opt/grafana-backup-tool; 
        pip3 --no-cache-dir install .; 
        chown -R 1337:1337 /opt/grafana-backup-tool
    
    WORKDIR /opt/grafana-backup-tool
    
    USER 1337
    

    只有 Dockerfile 不行,还得通过 CI/CD 自动构建并推送到 docker.io。不要问我用什么,当然是白嫖 GitHub Actionworkflow 内容如下:

    #=================================================
    # https://github.com/yangchuansheng/docker-image
    # Description: Build and push grafana-backup-tool Docker image
    # Lisence: MIT
    # Author: Ryan
    # Blog: https://fuckcloudnative.io
    #=================================================
    
    name: Build and push grafana-backup-tool Docker image
    
    # Controls when the action will run. Triggers the workflow on push or pull request
    # events but only for the master branch
    on:
      push:
        branches: [ master ]
        paths: 
          - 'grafana-backup-tool/Dockerfile'
          - '.github/workflows/grafana-backup-tool.yml'
      pull_request:
        branches: [ master ]
        paths: 
          - 'grafana-backup-tool/Dockerfile'
      #watch:
        #types: started
    
    # A workflow run is made up of one or more jobs that can run sequentially or in parallel
    jobs:
      # This workflow contains a single job called "build"
      build:
        # The type of runner that the job will run on
        runs-on: ubuntu-latest
    
        # Steps represent a sequence of tasks that will be executed as part of the job
        steps:
        # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
        - uses: actions/checkout@v2
    
        - name: Set up QEMU
          uses: docker/setup-qemu-action@v1
    
        - name: Set up Docker Buildx
          uses: docker/setup-buildx-action@v1
    
        - name: Login to DockerHub
          uses: docker/login-action@v1 
          with:
            username: ${{ secrets.DOCKER_USERNAME }}
            password: ${{ secrets.DOCKER_PASSWORD }}
            
        - name: Login to GitHub Package Registry
          env:
            username: ${{ github.repository_owner }}
            password: ${{ secrets.GHCR_TOKEN }}
          run: echo ${{ env.password }} | docker login ghcr.io -u ${{ env.username }} --password-stdin  
    
        # Runs a single command using the runners shell
        - name: Build and push Docker images to docker.io and ghcr.io
          uses: docker/build-push-action@v2
          with:
            file: 'grafana-backup-tool/Dockerfile'
            platforms: linux/386,linux/amd64,linux/arm/v6,linux/arm/v7,linux/arm64,linux/ppc64le,linux/s390x
            context: grafana-backup-tool
            push: true
            tags: |
              yangchuansheng/grafana-backup-tool:latest
              ghcr.io/yangchuansheng/grafana-backup-tool:latest
    
        #- name: Update repo description
          #uses: peter-evans/dockerhub-description@v2
          #env:
            #DOCKERHUB_USERNAME: ${{ secrets.DOCKER_USERNAME }}
            #DOCKERHUB_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
            #DOCKERHUB_REPOSITORY: yangchuansheng/grafana-backup-tool
            #README_FILEPATH: grafana-backup-tool/readme.md
    

    这里我不打算解释 workflow 的内容,有点基础的应该都能看懂,实在不行,以后我会单独写文章解释(又可以继续水文了~)。这个 workflow 实现的功能就是自动构建各个 CPU 架构的镜像,并推送到 docker.ioghcr.io,特么的真香!

    就问爽不爽?

    你可以直接关注我的仓库:

    构建好镜像后,就可以直接运行容器来进行备份和恢复操作了。如果你想在集群内操作,可以通过 Deployment 或 Job 来实现;如果你想在本地或 k8s 集群外操作,可以选择 docker run,我不反对,你也可以选择 docker-compose,这都没问题。但我要告诉你一个更骚的办法,可以骚到让你无法自拔。

    首先需要在本地或集群外安装 Podman,如果操作系统是 Win10,可以考虑通过 WSL 来安装;如果操作系统是 Linux,那就不用说了;如果操作系统是 MacOS,请参考我的上篇文章:在 macOS 中使用 Podman

    装好了 Podman 之后,就可以进行骚操作了,请睁大眼睛。

    先编写一个 Deployment 配置清单(什么?Deployment?是的,你没听错):

    grafana-backup-deployment.yaml

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: grafana-backup
      labels:
        app: grafana-backup
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: grafana-backup
      template:
        metadata:
          labels:
            app: grafana-backup
        spec:
          containers:
          - name: grafana-backup
            image: yangchuansheng/grafana-backup-tool:latest
            imagePullPolicy: IfNotPresent
            command: ["/bin/bash"]
            tty: true
            stdin: true
            env:
            - name: GRAFANA_TOKEN
              value: "eyJr0NkFBeWV1QVpMNjNYWXA3UXNOM2JWMWdZOTB2ZFoiLCJuIjoiYWRtaW4iLCJpZCI6MX0="
            - name: GRAFANA_URL
              value: "http://<grafana_ip>:<grafana_port>"
            - name: GRAFANA_ADMIN_ACCOUNT
              value: "admin"
            - name: GRAFANA_ADMIN_PASSWORD
              value: "admin"
            - name: VERIFY_SSL
              value: "False"
            volumeMounts:
            - mountPath: /opt/grafana-backup-tool
              name: data
          volumes:
          - name: data
            hostPath:
              path: /mnt/manifest/grafana/backup
    

    这里面的环境变量根据自己的实际情况修改,一定不要照抄我的!

    不要一脸懵逼,我先来解释一下为什么要准备这个 Deployment 配置清单,因为 Podman 可以直接通过这个配置清单运行容器,命令如下:

    $ podman play kube grafana-backup-deployment.yaml
    

    我第一次见到这个操作的时候也不禁连连我艹,这也可以?确实可以,不过呢,Podman 只是将其翻译一下,跑个容器而已,并不是真正运行 Deployment,因为它没有控制器啊,但是,还是真香!

    想象一下,你可以将 k8s 集群中的配置清单拿到本地或测试机器直接跑,再也不用 k8s 集群准备一份 yaml,docker-compose 再准备一份 yaml 了,一份 yaml 走天下,服不服?

    docker-compose 混到今天这个地步,也是蛮可怜的。

    细心的读者应该能发现上面的配置清单有点奇怪,Dockerfile 也有点奇怪。Dockerfile 中没有写 CMDENTRYPOINT,Deployment 中直接将启动命令设置为 bash,这是因为在我之前测试的过程中发现该镜像启动的容器有点问题,它会陷入一个循环,备份完了之后又会继续备份,不断重复,导致备份目录下生成了一坨压缩包。目前还没找到比较好的解决办法,只能将容器的启动命令设置为 bash,等容器运行后再进入容器进行备份操作:

    $ podman pod ls
    POD ID        NAME                  STATUS   CREATED        # OF CONTAINERS  INFRA ID
    728aec216d66  grafana-backup-pod-0  Running  3 minutes ago  2                92aa0824fe7d
    
    $ podman ps
    CONTAINER ID  IMAGE                                      COMMAND    CREATED        STATUS            PORTS   NAMES
    b523fa8e4819  yangchuansheng/grafana-backup-tool:latest  /bin/bash  3 minutes ago  Up 3 minutes ago          grafana-backup-pod-0-grafana-backup
    92aa0824fe7d  k8s.gcr.io/pause:3.2                                  3 minutes ago  Up 3 minutes ago          728aec216d66-infra
    
    $ podman exec -it grafana-backup-pod-0-grafana-backup bash
    bash-5.0$ grafana-backup save
    ...
    ...
    ########################################
    
    backup folders at: _OUTPUT_/folders/202012111556
    backup datasources at: _OUTPUT_/datasources/202012111556
    backup dashboards at: _OUTPUT_/dashboards/202012111556
    backup alert_channels at: _OUTPUT_/alert_channels/202012111556
    backup organizations at: _OUTPUT_/organizations/202012111556
    backup users at: _OUTPUT_/users/202012111556
    
    created archive at: _OUTPUT_/202012111556.tar.gz
    

    默认情况下会备份所有的组件,你也可以指定备份的组件:

    $ grafana-backup save --components=<folders,dashboards,datasources,alert-channels,organizations,users>
    

    比如,我只想备份 Dashboards 和 Folders:

    $ grafana-backup save --components=folders,dashboards
    

    当然,你也可以全部备份,恢复的时候再选择自己想恢复的组件:

    $ grafana-backup restore --components=folders,dashboards
    

    至此,再也不用怕 Dashboard 被改掉或删除啦。

    最后提醒一下,Prometheus Operator 项目中的 Grafana 通过 Provisioning 的方式预导入了一些默认的 Dashboards,这本来没有什么问题,但 grafana-backup-tool 工具无法忽略跳过已经存在的配置,如果恢复的过程中遇到已经存在的配置,会直接报错退出。本来这也很好解决,一般情况下到 Grafana Web 界面中删除所有的 Dashboard 就好了,但通过 Provisioning 导入的 Dashboard 是无法删除的,这就很尴尬了。

    在作者修复这个 bug 之前,要想解决这个问题,有两个办法:

    第一个办法是在恢复之前将 Grafana Deployment 中关于 Provisioning 的配置全部删除,就是这些配置:

            volumeMounts:
            - mountPath: /etc/grafana/provisioning/datasources
              name: grafana-datasources
              readOnly: false
            - mountPath: /etc/grafana/provisioning/dashboards
              name: grafana-dashboards
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/apiserver
              name: grafana-dashboard-apiserver
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/cluster-total
              name: grafana-dashboard-cluster-total
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/controller-manager
              name: grafana-dashboard-controller-manager
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/k8s-resources-cluster
              name: grafana-dashboard-k8s-resources-cluster
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/k8s-resources-namespace
              name: grafana-dashboard-k8s-resources-namespace
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/k8s-resources-node
              name: grafana-dashboard-k8s-resources-node
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/k8s-resources-pod
              name: grafana-dashboard-k8s-resources-pod
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/k8s-resources-workload
              name: grafana-dashboard-k8s-resources-workload
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/k8s-resources-workloads-namespace
              name: grafana-dashboard-k8s-resources-workloads-namespace
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/kubelet
              name: grafana-dashboard-kubelet
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/namespace-by-pod
              name: grafana-dashboard-namespace-by-pod
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/namespace-by-workload
              name: grafana-dashboard-namespace-by-workload
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/node-cluster-rsrc-use
              name: grafana-dashboard-node-cluster-rsrc-use
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/node-rsrc-use
              name: grafana-dashboard-node-rsrc-use
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/nodes
              name: grafana-dashboard-nodes
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/persistentvolumesusage
              name: grafana-dashboard-persistentvolumesusage
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/pod-total
              name: grafana-dashboard-pod-total
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/prometheus-remote-write
              name: grafana-dashboard-prometheus-remote-write
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/prometheus
              name: grafana-dashboard-prometheus
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/proxy
              name: grafana-dashboard-proxy
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/scheduler
              name: grafana-dashboard-scheduler
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/statefulset
              name: grafana-dashboard-statefulset
              readOnly: false
            - mountPath: /grafana-dashboard-definitions/0/workload-total
              name: grafana-dashboard-workload-total
              readOnly: false
    ...
    ...
          volumes:
          - name: grafana-datasources
            secret:
              secretName: grafana-datasources
          - configMap:
              name: grafana-dashboards
            name: grafana-dashboards
          - configMap:
              name: grafana-dashboard-apiserver
            name: grafana-dashboard-apiserver
          - configMap:
              name: grafana-dashboard-cluster-total
            name: grafana-dashboard-cluster-total
          - configMap:
              name: grafana-dashboard-controller-manager
            name: grafana-dashboard-controller-manager
          - configMap:
              name: grafana-dashboard-k8s-resources-cluster
            name: grafana-dashboard-k8s-resources-cluster
          - configMap:
              name: grafana-dashboard-k8s-resources-namespace
            name: grafana-dashboard-k8s-resources-namespace
          - configMap:
              name: grafana-dashboard-k8s-resources-node
            name: grafana-dashboard-k8s-resources-node
          - configMap:
              name: grafana-dashboard-k8s-resources-pod
            name: grafana-dashboard-k8s-resources-pod
          - configMap:
              name: grafana-dashboard-k8s-resources-workload
            name: grafana-dashboard-k8s-resources-workload
          - configMap:
              name: grafana-dashboard-k8s-resources-workloads-namespace
            name: grafana-dashboard-k8s-resources-workloads-namespace
          - configMap:
              name: grafana-dashboard-kubelet
            name: grafana-dashboard-kubelet
          - configMap:
              name: grafana-dashboard-namespace-by-pod
            name: grafana-dashboard-namespace-by-pod
          - configMap:
              name: grafana-dashboard-namespace-by-workload
            name: grafana-dashboard-namespace-by-workload
          - configMap:
              name: grafana-dashboard-node-cluster-rsrc-use
            name: grafana-dashboard-node-cluster-rsrc-use
          - configMap:
              name: grafana-dashboard-node-rsrc-use
            name: grafana-dashboard-node-rsrc-use
          - configMap:
              name: grafana-dashboard-nodes
            name: grafana-dashboard-nodes
          - configMap:
              name: grafana-dashboard-persistentvolumesusage
            name: grafana-dashboard-persistentvolumesusage
          - configMap:
              name: grafana-dashboard-pod-total
            name: grafana-dashboard-pod-total
          - configMap:
              name: grafana-dashboard-prometheus-remote-write
            name: grafana-dashboard-prometheus-remote-write
          - configMap:
              name: grafana-dashboard-prometheus
            name: grafana-dashboard-prometheus
          - configMap:
              name: grafana-dashboard-proxy
            name: grafana-dashboard-proxy
          - configMap:
              name: grafana-dashboard-scheduler
            name: grafana-dashboard-scheduler
          - configMap:
              name: grafana-dashboard-statefulset
            name: grafana-dashboard-statefulset
          - configMap:
              name: grafana-dashboard-workload-total
            name: grafana-dashboard-workload-total
    

    第二个办法就是删除 Prometheus Operator 自带的 Grafana,自己通过 Helm 或者 manifest 部署不使用 Provisioning 的 Grafana。

    如果你既不想删除 Provisioning 的配置,也不想自己部署 Grafana,那只能使用上文提到的低级方案了。


    Kubernetes 1.18.2 1.17.5 1.16.9 1.15.12离线安装包发布地址http://store.lameleg.com ,欢迎体验。 使用了最新的sealos v3.3.6版本。 作了主机名解析配置优化,lvscare 挂载/lib/module解决开机启动ipvs加载问题, 修复lvscare社区netlink与3.10内核不兼容问题,sealos生成百年证书等特性。更多特性 https://github.com/fanux/sealos 。欢迎扫描下方的二维码加入钉钉群 ,钉钉群已经集成sealos的机器人实时可以看到sealos的动态。

  • 相关阅读:
    sql Test
    使用Team Foundation Server进行源代码管理
    幸运的秘密
    使用Dotmsn扩展Joymsg聊天机器人,使其同时支持QQ.MSN
    发布.net项目开发工具新版
    C#.Net项目生成器(ibatis)使用说明
    敏捷开发,Agile Development
    单元测试基础篇VS2008
    iBATIS.NET
    IBatis.Net学习笔记系列
  • 原文地址:https://www.cnblogs.com/ryanyangcs/p/14143531.html
Copyright © 2011-2022 走看看