zoukankan      html  css  js  c++  java
  • 关联分析算法Apriori和FP-Growth

    参考文献:

    https://www.cnblogs.com/zhengxingpeng/p/6679280.html

    https://www.kdnuggets.com/2016/04/association-rules-apriori-algorithm-tutorial.html

    代码:

    Apriori:

    import pandas as pd
    from mlxtend.preprocessing import TransactionEncoder
    from mlxtend.frequent_patterns import apriori
    from Mine import C24_get_flaw_list
    from Mine import C13_get_flaw_list
    from mlxtend.frequent_patterns import association_rules
    
    
    pd.set_option('display.max_columns', None)
    # dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
    #            ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
    #            ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
    #            ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
    #            ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
    
    
    dataset = C24_get_flaw_list()
    te = TransactionEncoder()
    te_ary = te.fit(dataset).transform(dataset)
    df = pd.DataFrame(te_ary, columns=te.columns_)
    frequent_itemsets = apriori(df, min_support=0.1, use_colnames=True)
    print(association_rules(frequent_itemsets, metric="confidence", min_threshold=0.1))

    FP-Growth:

    class treeNode:
        def __init__(self, nameValue, numOccur, parentNode):
            self.name = nameValue
            self.count = numOccur
            self.nodeLink = None
            self.parent = parentNode
            self.children = {}
    
        def inc(self, numOccur):
            self.count += numOccur
    
        def disp(self, ind=1):
            print(' ' * ind, self.name, ' ', self.count)
            for child in self.children.values():
                child.disp(ind + 1)
    
    
    def updateHeader(nodeToTest, targetNode):
        while (nodeToTest.nodeLink != None):
            nodeToTest = nodeToTest.nodeLink
        nodeToTest.nodeLink = targetNode
    
    
    def updateTree(items, inTree, headerTable, count):
        if items[0] in inTree.children:
            # 有该元素项时计数值+1
            inTree.children[items[0]].inc(count)
        else:
            # 没有这个元素项时创建一个新节点
            inTree.children[items[0]] = treeNode(items[0], count, inTree)
            # 更新头指针表或前一个相似元素项节点的指针指向新节点
            if headerTable[items[0]][1] == None:
                headerTable[items[0]][1] = inTree.children[items[0]]
            else:
                updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    
        if len(items) > 1:
            # 对剩下的元素项迭代调用updateTree函数
            updateTree(items[1::], inTree.children[items[0]], headerTable, count)
    
    
    def createTree(dataSet, minSup=1):
        ''' 创建FP树 '''
        # 第一次遍历数据集,创建头指针表
        headerTable = {}
        for trans in dataSet:
            for item in trans:
                headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
        # 移除不满足最小支持度的元素项
        for k in list(headerTable.keys()):
            if headerTable[k] < minSup:
                del(headerTable[k])
        # 空元素集,返回空
        freqItemSet = set(headerTable.keys())
        if len(freqItemSet) == 0:
            return None, None
        # 增加一个数据项,用于存放指向相似元素项指针
        for k in headerTable:
            headerTable[k] = [headerTable[k], None]
        retTree = treeNode('Null Set', 1, None) # 根节点
        # 第二次遍历数据集,创建FP树
        print("dataset = ", dataSet)
        for tranSet, count in dataSet.items():
            localD = {} # 对一个项集tranSet,记录其中每个元素项的全局频率,用于排序
            for item in tranSet:
                if item in freqItemSet:
                    localD[item] = headerTable[item][0] # 注意这个[0],因为之前加过一个数据项
            if len(localD) > 0:
                orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)] # 排序
                updateTree(orderedItems, retTree, headerTable, count) # 更新FP树
        return retTree, headerTable
    
    
    def loadSimpDat():
        # simpDat = [['r', 'z', 'h', 'j', 'p'],
        #            ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
        #            ['z'],
        #            ['r', 'x', 'n', 'o', 's'],
        #            ['y', 'r', 'x', 'z', 'q', 't', 'p'],
        #            ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
        simpDat = [["a", "b"],
                   ["a", "b"],
                   ["a", "b"],
                   ["b", "c", "d"],
                   ["b", "c"]]
        return simpDat
    
    
    def createInitSet(dataSet):
        retDict = {}
        for trans in dataSet:
            if frozenset(trans) in retDict.keys():
                retDict[frozenset(trans)] += 1
            else:
                retDict[frozenset(trans)] = 1
        return retDict
    
    
    def ascendTree(leafNode, prefixPath):
        if leafNode.parent != None:
            prefixPath.append(leafNode.name)
            ascendTree(leafNode.parent, prefixPath)
    
    
    def findPrefixPath(basePat, treeNode):
        ''' 创建前缀路径 '''
        condPats = {}
        while treeNode != None:
            prefixPath = []
            ascendTree(treeNode, prefixPath)
            if len(prefixPath) > 1:
                condPats[frozenset(prefixPath[1:])] = treeNode.count
            treeNode = treeNode.nodeLink
        return condPats
    
    
    def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
        bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1][0])]#(sort header table)
        print("header.items = ", headerTable.items())
        for basePat in bigL:
            newFreqSet = preFix.copy()
            newFreqSet.add(basePat)
            freqItemList.append(newFreqSet)
            condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
            myCondTree, myHead = createTree(condPattBases, minSup)
            if myHead != None:
                mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
    
    
    def main(simDat, minSup):
        initSet = createInitSet(simDat)
        myFPtree, myHeaderTab = createTree(initSet, minSup)
        treeNode.disp(myFPtree)
        freqItems = []
        mineTree(myFPtree, myHeaderTab, minSup, set([]), freqItems)
        for x in freqItems:
            print(x)
    
    
    if __name__ == "__main__":
        simDat = loadSimpDat()
        main(simDat, 3)
  • 相关阅读:
    Springcloudalibaba之Nacos服务注册和配置中心
    SpringBoot监控工具包Actuator使用
    服务注册中心之Consul使用
    微服务项目SpringcloudAlibaba
    微服务之链路跟踪SpringCloudSleuth
    微服务之消息驱动SpringCloudStream
    微服务之消息总线SpringCloudBus
    微服务之配置中心Config
    深入理解javascript原型和闭包(1)——一切都是对象
    js中函数创建的三种方式
  • 原文地址:https://www.cnblogs.com/ryu-manager/p/9395763.html
Copyright © 2011-2022 走看看