zoukankan      html  css  js  c++  java
  • 初学三种神经网络(前馈,竞争,递归联想存储网络)

    本人菜鸟,由于兴趣学习神经网络,本人能力有限,难免会出错,如有大大路过,望指出,学习内容出自《神经网络设计》,译者:戴葵

     

    当水果通过这些传感器后,它可以用一个三维变量表示,分别表示外形,质地,质量,输入向量如下表示:

     

     现有问题

     

    1.感知机

         现在希望选择适当的偏置值b和权值矩阵元素w来区分两种水果,设水果为香蕉时,输出1,菠萝输出-1,根据,输入个数为3,所以维数为3,由于输入向量第一个是不能判断的,因此第一个维数设置为0,为了使香蕉和菠萝的wp+b(权值乘以输入+偏置值)差距拉大,我们设置第二个维数为1,第三个维数为-1。因此权值为[0 1 -1],输入输出函数用matlab的hardlim函数(硬极限函数),函数输入图如下

     

                             p1

    输出a=handlim( [ p2 ]*[0 1 -1]+0)

                             p3

                                                      -1  

    测试实例,输入香蕉,则a=handlim(  [ 1 ]*[0 1 -1])=handlim(2)=1。

                                                      -1

    而菠萝=handlim(-2)=-1.

     若是有一个不规则水果输入,实际效果会根据相对水果的标准向量,如菠萝为[-1 -1 1],如距离(根据欧基米德距离)接近菠萝,则归为菠萝,反则亦然

    2.Hamming网络

      Hamming网络用于判断哪个标准向量最接近于输入向量,如输入([ 1 1 1 ]T),判断是接近[-1 1 -1]香蕉还是[-1 -1 1]菠萝。

      最后判定结果由最后的输出判断,每个标准向量对应于递归层的一个向量,输出里面非零的神经元即是输入向量更接近于哪个标准向量。

    1.前馈层

      用于实现每个标准模式和输入模式之间的相关检测和内积。可以用标准模式设置其权值矩阵的行,前馈层使用线性传输,对于菠萝香蕉实例来说,有:

         输出a1=w1p+b1.

           p1T     -1  1 -1                                                                                           3

         w1=[ p2T ]=[-1 -1  1],权值w1是由两个水果标准模式组成的,神经元素个数为R,因此b1取值为[3],为了防止输出为负数。

      先设输入为[-1  1 -1](香蕉)。

             -1   1 -1   -1       3      6

      因此输出a1=[-1 -1 -1]*[ 1 ]+[ 3 ]=[ 4 ]

                                         -1

    2.反馈层

      

    作者:大傻逼
    本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
  • 相关阅读:
    Umbraco建站指南[0]:前言
    项目开发中一些不得其解的问题
    Maven Install 的傻问题
    html5 audio/video 操作
    CentOS7.3安装MySQL5.7
    Maven将独立jar包安装到本地库
    MyBatis 中 foreach 语句处理 List<Integer>类型
    站内信系统的设计思路
    Spring+MyBatis项目开发代码步骤
    webpack 配置eslint-standard
  • 原文地址:https://www.cnblogs.com/s-b-b/p/4751093.html
Copyright © 2011-2022 走看看