zoukankan      html  css  js  c++  java
  • LOJ#6496. 「雅礼集训 2018 Day1」仙人掌 题解

    题目链接

    这个题训练的时候做了……然后……我圆方树对方点儿子排序的部分写错了……

    建出圆方树,然后考虑DP.

    对于每个方点x,我们需要知道儿子节点(圆点)还剩下度数为0/1/2的方案数,用来DP。

    对于每个圆点x,我们需要知道儿子节点会用掉x的多少度数以及对应的方案数,不难想到把它们写成一个多项式,卷积起来即可得到。这个点还剩下度数为0/1/2的方案数。

    观察到不管是圆点还是方点,会用掉父亲节点的度数一定 (leq 2) ,所以直接分治FFT,复杂度不超过 (Theta(nlog^2 n))

    代码:

    #include <bits/stdc++.h>
    #define LL long long
    using namespace std;
    const int P = 998244353,N = 100050,V = N<<1,NN = 524288;
    inline void upd(int &x,int v){ x = (x+v>=P)?(x+v-P):(x+v); }
    inline int power(int x,int y){ static int r; r = 1; while (y){ if (y&1) r = (LL)r * x % P; x = (LL)x * x % P; y >>= 1; } return r; }
    int rt[30],irt[30],R[NN],inv[NN+5];
    inline int getR(int n){
    	static int Lim,l; Lim = 1,l = 0; while (Lim <= n) Lim <<= 1,++l;
    	for (int i = 0; i < Lim; ++i) R[i] = (R[i>>1]>>1)|((i&1)<<l-1);
    	return Lim;
    }
    inline void NTT(int *A,int n){
    	register int i,j,k,l,x,w,w0;
    	for (i = 0; i < n; ++i) if (i < R[i]) swap(A[i],A[R[i]]);
    	for (i = l = 1; i < n; i <<= 1,++l)
    	for (j = 0,w0 = rt[l]; j < n; j += i << 1)
    	for (k = j,w = 1; k < i+j; ++k,w = (LL)w * w0 % P)
    		x = (LL)w * A[k+i] % P,A[k+i] = (A[k]<x) ? (A[k]+P-x) : (A[k]-x),A[k] = (x+A[k]>=P)?(x+A[k]-P):(x+A[k]);
    }
    inline void iNTT(int *A,int n){
    	register int i,j,k,l,x,w,w0;
    	for (i = 0; i < n; ++i) if (i < R[i]) swap(A[i],A[R[i]]);
    	for (i = l = 1; i < n; i <<= 1,++l)
    	for (j = 0,w0 = irt[l]; j < n; j += i << 1)
    	for (k = j,w = 1; k < i+j; ++k,w = (LL)w * w0 % P)
    		x = (LL)w * A[k+i] % P,A[k+i] = (A[k]<x) ? (A[k]+P-x) : (A[k]-x),A[k] = (x+A[k]>=P)?(x+A[k]-P):(x+A[k]);
    	for (i = 0,w = inv[n]; i < n; ++i) A[i] = (LL)A[i] * w % P;
    }
    typedef vector<int> Frac;
    void Mulf(Frac &F,Frac &G,Frac &H){ // H = F * G
    	static int A[NN],B[NN],n,m,i,Lim;
    	n = F.size(),m = G.size();
    	if (n <= 30 && m <= 30){
    		H.resize(n+m-1); for (i = 0; i < n+m-1; ++i) H[i] = 0;
    		for (i = 0; i < n; ++i) for (int j = 0; j < m; ++j) upd(H[i+j],(LL)F[i] * G[j] % P);
    		return;
    	}
    	Lim = getR(n+m-2),memset(A,0,Lim<<2),memset(B,0,Lim<<2);
    	for (i = 0; i < n; ++i) A[i] = F[i]; for (i = 0; i < m; ++i) B[i] = G[i];
    	NTT(A,Lim); NTT(B,Lim); for (i = 0; i < Lim; ++i) A[i] = (LL)A[i] * B[i] % P; iNTT(A,Lim);
    	H.resize(n+m-1); for (i = 0; i < n+m-1; ++i) H[i] = A[i]; return;
    }
    Frac F[V<<1]; int cntid,lim;
    int Work(int l,int r){
    	if (l == r) return l;
    	int mid = l+r>>1,L = Work(l,mid),R = Work(mid+1,r),o = ++cntid;
    	Mulf(F[L],F[R],F[o]); if (F[o].size() > lim+1) F[o].resize(lim+1);
    	return o;
    }
    struct Mat{ int a00,a01,a10,a11; Mat(int v00 = 0,int v01 = 0,int v10 = 0,int v11 = 0){ a00 = v00,a01 = v01,a10 = v10,a11 = v11; } };
    inline Mat operator * (Mat A,Mat B){
    	return Mat(((LL)A.a01 * B.a00 + (LL)A.a00 * B.a10) % P,
    			((LL)A.a01 * B.a01 + (LL)A.a00 * B.a11) % P,
    			((LL)A.a11 * B.a00 + (LL)A.a10 * B.a10) % P,
    			((LL)A.a11 * B.a01 + (LL)A.a10 * B.a11) % P);
    }
    int n,cntv,a[V]; Frac dp[V]; vector<int>Gr[V];
    bool vis[V],dfsed[V],used[V]; int m,ex[V],ey[V],fa[V],fae[V],dpt[V],id[V];
    inline void dfs1(int x){
    	vis[x] = 1,dpt[x] = dpt[fa[x]] + 1;
    	for (int i = 0,e,y; i < Gr[x].size(); ++i){
    		e = Gr[x][i],y = ex[e] + ey[e] - x;
    		if (!vis[y]) dfsed[e] = 1,fa[y] = x,fae[y] = e,dfs1(y);
    	}
    }
    vector<int>G[V];
    inline void adde(int x,int y){ G[x].push_back(y),G[y].push_back(x); }
    inline void make_circle(int x,int y){
    	if (dpt[x] > dpt[y]) swap(x,y); ++cntv; adde(cntv,y);
    	id[y] = 1; while (y ^ x) used[fae[y]] = 1,id[fa[y]] = id[y] + 1,y = fa[y],adde(cntv,y);
    }
    inline bool cmp(int x,int y){ return id[x] < id[y]; }
    int f[V][4],g[V][4];
    inline void dfs2(int x){
    	vector<int>ch;
    	for (int i = 0,y; i < G[x].size(); ++i) if ((y=G[x][i])^fa[x]){ fa[y] = x,dfs2(y); if (x > n) ch.push_back(y); }
    	if (x > n){
    		for (int i = 0,y; i < ch.size(); ++i){
    			y = ch[i],id[y] = dpt[y] - dpt[fa[x]]; if (id[y] < 0) id[y] += 1000000;
    		}
    		sort(ch.begin(),ch.end(),cmp);
    		Mat T(0,1,1,0);
    		for (int i = 0,y; i < ch.size(); ++i)
    			y = ch[i],T = T * Mat(f[y][0],f[y][1],f[y][1],f[y][2]);
    		g[x][2] = T.a00,g[x][1] = (T.a01 + T.a10) % P,g[x][0] = T.a11;
    		return;
    	}
    	int m = 0;
    	for (int i = 0,y; i < G[x].size(); ++i) if ((y=G[x][i])^fa[x]){
    		++m; if (g[y][2]) F[m].resize(3); else if (g[y][1]) F[m].resize(2); else if (g[y][0]) F[m].resize(1); else F[m].resize(0);
    		for (int j = 0; j < F[m].size(); ++j) F[m][j] = g[y][j];
    	}
    	if (m) lim = a[x],cntid = m,dp[x] = F[Work(1,m)]; else dp[x].resize(1),dp[x][0] = 1;
    	for (int i = 0; i <= a[x] && i < dp[x].size(); ++i){
    		if (i <= a[x]) upd(f[x][0],dp[x][i]);
    		if (i <= a[x]-1) upd(f[x][1],dp[x][i]);
    		if (i <= a[x]-2) upd(f[x][2],dp[x][i]);
    	}
    	g[x][1] = f[x][0],g[x][0] = f[x][1];
    }
    int main(){
    	int i,j;
    	for (i = 1,j = 2; i <= 25; ++i,j <<= 1) rt[i] = power(3,(P-1)/j),irt[i] = power(rt[i],P-2);
    	for (inv[0] = inv[1] = 1,i = 2; i <= NN; ++i) inv[i] = (LL)(P-P/i) * inv[P%i] % P;
    	ios::sync_with_stdio(0);
    	cin >> n >> m; cntv = n;
    	for (i = 1; i <= m; ++i) cin >> ex[i] >> ey[i],++a[ex[i]],++a[ey[i]],Gr[ex[i]].push_back(i),Gr[ey[i]].push_back(i);
    	for (i = 1; i <= n; ++i) cin >> j,a[i] = min(a[i],j);
    	dfs1(1);
    	for (i = 1; i <= m; ++i) if (!dfsed[i]) make_circle(ex[i],ey[i]);
    	for (i = 1; i <= m; ++i) if (dfsed[i] && !used[i]) adde(ex[i],ey[i]);
    	dfs2(1);
    	cout << f[1][0] << '
    ';
    	return 0;
    }
    
  • 相关阅读:
    【今日CV 视觉论文速览】 19 Nov 2018
    【numpy求和】numpy.sum()求和
    【今日CV 视觉论文速览】16 Nov 2018
    【今日CV 视觉论文速览】15 Nov 2018
    poj 2454 Jersey Politics 随机化
    poj 3318 Matrix Multiplication 随机化算法
    hdu 3400 Line belt 三分法
    poj 3301 Texas Trip 三分法
    poj 2976 Dropping tests 0/1分数规划
    poj 3440 Coin Toss 概率问题
  • 原文地址:https://www.cnblogs.com/s-r-f/p/13599445.html
Copyright © 2011-2022 走看看