zoukankan      html  css  js  c++  java
  • POJ 1556 The Doors(线段交+最短路)

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    #include <map>
    #include <vector>
    #include <set>
    #include <string>
    #include <math.h>
    
    using namespace std;
    
    const double eps = 1e-8;
    int sgn(double x)
    {
        if(fabs(x) < eps)return 0;
        if(x < 0) return -1;
        else return 1;
    }
    struct Point
    {
        double x,y;
        Point(){}
        Point(double _x,double _y)
        {
            x = _x;y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x,y - b.y);
        }
        double operator ^(const Point &b)const
        {
            return x*b.y - y*b.x;
        }
        double operator *(const Point &b)const
        {
            return x*b.x + y*b.y;
        }
    };
    struct Line
    {
        Point s,e;
        Line(){}
        Line(Point _s,Point _e)
        {
            s = _s;e = _e;
        }
    };
    //判断线段相交
    bool inter(Line l1,Line l2)
    {
        return 
            max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
            max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
            max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
            max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
            sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) <= 0 &&
            sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) <= 0;
    }
    double dist(Point a,Point b)
    {
        return sqrt((b-a)*(b-a));
    }
    const int MAXN = 100;
    Line line[MAXN];
    double dis[MAXN][MAXN];
    const double INF = 1e20;
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int n;
        double x,y1,y2,y3,y4;
        while(scanf("%d",&n) == 1)
        {
            if(n == -1) break;
            for(int i = 1;i <= n;i++)
            {
                scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
                line[2*i-1] = Line(Point(x,y1),Point(x,y2));
                line[2*i] = Line(Point(x,y3),Point(x,y4));
            }
            for(int i = 0;i <= 4*n+1;i++)
                for(int j = 0;j <= 4*n+1;j++)
                {
                    if(i == j)dis[i][j] = 0;
                    else dis[i][j] = INF;
                }
            for(int i = 1;i <= 4*n;i++)
            {
                int lid = (i+3)/4;
                bool flag = true;
                Point tmp;
                if(i&1)tmp = line[(i+1)/2].s;
                else tmp = line[(i+1)/2].e;
                for(int j = 1;j < lid;j++)
                    if(inter(line[2*j-1],Line(Point(0,5),tmp)) == false
                            && inter(line[2*j],Line(Point(0,5),tmp)) == false)
                        flag = false;
                if(flag)dis[0][i] =dis[i][0] = dist(Point(0,5),tmp);
                flag = true;
                for(int j = lid+1;j <= n;j++)
                    if(inter(line[2*j-1],Line(Point(10,5),tmp)) == false
                            && inter(line[2*j],Line(Point(10,5),tmp)) == false)
                        flag = false;
                if(flag)dis[i][4*n+1] =dis[4*n+1][i] = dist(Point(10,5),tmp);
            }
            for(int i = 1;i <= 4*n;i++)
                for(int j = i+1;j <=4*n;j++)
                {
                    int lid1 = (i+3)/4;
                    int lid2 = (j+3)/4;
                    bool flag = true;
                    Point p1,p2;
                    if(i&1)p1 = line[(i+1)/2].s;
                    else p1 = line[(i+1)/2].e;
                    if(j&1)p2 = line[(j+1)/2].s;
                    else p2 = line[(j+1)/2].e;
                    for(int k = lid1+1;k < lid2;k++)
                        if(inter(line[2*k-1],Line(p1,p2)) == false
                                && inter(line[2*k],Line(p1,p2)) == false)
                            flag = false;
                    if(flag) dis[i][j] = dis[j][i] = dist(p1,p2);
                }
            bool flag = true;
            for(int i = 1;i <= n;i++)
                if(inter(line[2*i-1],Line(Point(0,5),Point(10,5))) == false
                        && inter(line[2*i],Line(Point(0,5),Point(10,5))) == false)
                    flag = false;
            if(flag)dis[0][4*n+1] = dis[4*n+1][0] = 10;
            for(int k = 0;k <= 4*n+1;k++)
                for(int i = 0;i <= 4*n+1;i++)
                    for(int j = 0;j <= 4*n+1;j++)
                        if(dis[i][k] + dis[k][j] < dis[i][j])
                            dis[i][j] = dis[i][k] + dis[k][j];
            printf("%.2lf
    ",dis[0][4*n+1]);
        }
        
        return 0;
    }
    

      

  • 相关阅读:
    【Android命令行】apktool参数详解
    【Android】ANR+OOM+FC
    如何创建低成本沙箱环境?推荐你使用API仿真!
    关于代码覆盖率,你不可不知的两大陷阱!
    如何借助自动创建单元测试来提高单元测试的投资回报率(ROI)?
    [实用指南]如何使您的旧代码库(遗留代码)符合MISRA C 2012编码规范?
    超实用的10个技巧!让您无论使用哪种静态分析工具都能轻松更新现有的静态分析实现
    主数据管理(MDM)的6大层级简述,你不可不知的数据治理参考!
    【收藏】关于元数据(Metadata)和元数据管理,这是我的见过最全的解读!
    机器学习 | 基于机器学习的供应链管理之销售库存优化分析(实操分享)
  • 原文地址:https://www.cnblogs.com/s1124yy/p/5521344.html
Copyright © 2011-2022 走看看