Design the city
【题目链接】Design the city
【题目类型】LCA tarjan
&题意:
给一个无根树,有q个询问,每个询问3个点,问将这3个点连起来,距离最短是多少
&题解:
我们可以求出2点距离,用O(n+q)的复杂度,那么怎么把他转化成这个才是关键,你可以在纸上画一画,发现分别求LCA(X,Y),LCA(X,Z),LCA(Y,Z)对应的距离,然后3个距离相加再除以2就是这个询问的结果 坑的是maxq要乘6,我想了好久 才发现我错的是乘了2 = =
【时间复杂度】(O(n+q))
&代码:
#include <cstdio>
#include <bitset>
#include <iostream>
#include <set>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
using namespace std;
#define INF 0x3f3f3f3f
#define ll long long
#define fo(i,a,b) for(int i=(a);i<=(b);i++)
#define fd(i,a,b) for(int i=(a);i>=(b);i--)
#define cle(a,v) memset(a,(v),sizeof(a))
const int maxn = 50000 + 7, maxq = 70000 + 7;
int n, q, He[maxn], Qhe[maxn], dis[maxn], vis[maxn], id, iq, num[maxq * 3], fa[maxn];
struct Edge {
int to, next, w;
} ed[maxn * 2], Qed[maxq * 6];
int uu[maxq * 6], vv[maxq * 6];
int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
void Ori() {
id = iq = 0;
cle(He, -1); cle(Qhe, -1);
cle(dis, 0); cle(vis, 0);
}
void EAdd(int u, int v, int w) {
ed[id].to = v, ed[id].w = w, ed[id].next = He[u];
He[u] = id++;
}
void QAdd(int u, int v, int index) {
Qed[iq].to = v, Qed[iq].w = index, Qed[iq].next = Qhe[u];
Qhe[u] = iq++;
}
void Lca(int r, int d, int top) {
fa[r] = r;
vis[r] = top;
dis[r] = d;
for(int k = He[r]; ~k; k = ed[k].next) {
if(!vis[ed[k].to]) {
Lca(ed[k].to, d + ed[k].w, top);
fa[ed[k].to] = r;
}
}
for(int k = Qhe[r]; ~k; k = Qed[k].next) {
if(vis[Qed[k].to]) {
num[Qed[k].w] = find(Qed[k].to);
}
}
}
int distance(int u, int v, int i) {
return dis[u] + dis[v] - 2 * dis[num[i]];
}
int K;
int main() {
freopen("E:1.in", "r", stdin);
while(~scanf("%d", &n)) {
if (K++) puts("");
Ori();
int u, v, w;
fo(i, 2, n) {
scanf("%d%d%d", &u, &v, &w);
u++, v++;
// printf("%d %d ==
", u, v);
EAdd(u, v, w);
EAdd(v, u, w);
}
scanf("%d", &q);
int tt = 1;
fo(i, 1, q) {
scanf("%d%d%d", &u, &v, &w);
u++, v++, w++;
QAdd(u, v, tt);
uu[tt] = u, vv[tt] = v;
QAdd(v, u, tt++);
QAdd(u, w, tt);
uu[tt] = u, vv[tt] = w;
QAdd(w, u, tt++);
QAdd(v, w, tt);
uu[tt] = v, vv[tt] = w;
QAdd(w, v, tt++);
}
Lca(1, 0, 1);
// fo(i, 1, n) {
// printf("%d---
", dis[i]);
// }
ll ans = 0;
fo(i, 1, tt - 1) {
// printf("%d
", num[i]);
ans += distance(uu[i], vv[i], i);
if(i % 3 == 0) {
printf("%lld
", ans / 2);
ans = 0;
}
}
}
return 0;
}