zoukankan      html  css  js  c++  java
  • 计算几何模板(入门级)

    尽管才刚入门 然而最近各方面能力都在下降 还是先把这个计算几何入门级模板放上来 弃坑做点其他的

    ----------------------------------------------------------------------------------------------------------------------

    UPD0 16.3.26

    UPD1 16.4.3 新增 向量旋转 两圆求交点 余弦定理 以及一些hint 

    UPD2 16.4.13 新增 轴对称点

    UPD3 16.7.18 新增 三角形面积 凸包上最大三角形 

    UPD4 16.7.27 新增 三点确定平面一般方程 点到平面距离

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cmath>
      4 #include <algorithm>
      5 using namespace std;
      6 const double eps = 1e-8, inf = 1e8, pi = acos(-1);
      7 const int N = 110;
      8 struct point
      9 {
     10     double x, y;
     11     point(){}
     12     point(double _x, double _y)
     13     {
     14         x = _x;
     15         y = _y;
     16     }
     17     point operator - (const point &p) const
     18     {
     19         return point(x - p.x, y - p.y);
     20     }
     21     point operator + (const point &p) const
     22     {
     23         return point(x + p.x, y + p.y);
     24     }
     25     double operator * (const point &p) const
     26     {
     27         return x * p.y - y * p.x;
     28     }
     29     double operator / (const point &p) const
     30     {
     31         return x * p.x + y * p.y;
     32     }
     33 }a[N], b[N << 1];
     34 
     35 struct line
     36 {
     37     point p1, p2;
     38     double ang;
     39     line(){}
     40     line(point p01, point p02)
     41     {
     42         p1 = p01;
     43         p2 = p02;
     44     }
     45     void getang()
     46     {
     47         ang = atan2(p2.y - p1.y, p2.x - p1.x);
     48     }
     49 }c[N], q[N];
     50 
     51 struct circle
     52 {
     53     double x, y, r;
     54 }cc;
     55 
     56 struct point3
     57 {
     58     double x, y, z;
     59     point3(){}
     60     point3(double _x, double _y, double _z)
     61     {
     62         x = _x;
     63         y = _y;
     64         z = _z;
     65     }
     66     point3 operator - (const point3 &p) const
     67     {
     68         return point3(x - p.x, y - p.y, z - p.z);
     69     }
     70     point3 operator + (const point3 &p) const
     71     {
     72         return point3(x + p.x, y + p.y, z - p.z);
     73     }
     74     point3 operator * (const point3 &p)const
     75     {
     76         return point3(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x);
     77     }
     78     double operator / (const point3 &p)const
     79     {
     80         return x * p.x + y * p.y + z * p.z;
     81     }
     82 };
     83 
     84 int n;
     85 
     86 bool cmp(const point &aa, const point &bb)
     87 {
     88     return aa.x < bb.x || (aa.x == bb.x && aa.y < bb.y);
     89 }
     90 
     91 bool cmpl(const line &aa, const line &bb)
     92 {
     93     if(abs(aa.ang - bb.ang) > eps)
     94         return aa.ang < bb.ang;
     95     return (bb.p2 - aa.p1) * (bb.p1 - bb.p2) > 0;
     96 }
     97 
     98 int sgn(double x)
     99 //正负判断
    100 {
    101     if(x > eps)
    102         return 1;
    103     if(x < -eps)
    104         return -1;
    105     return 0;
    106 }
    107 
    108 double getdist2(const point &aa)
    109 {
    110     return (aa.x * aa.x + aa.y * aa.y);
    111 }
    112 
    113 bool online(const point &aa, const point &bb, const point &cc)
    114 //三点共线判断
    115 {
    116     if(!(min(bb.x, cc.x) <= aa.x && aa.x <= max(bb.x, cc.x)))
    117         return 0;
    118     if(!(min(bb.y, cc.y) <= aa.y && aa.y <= max(bb.y, cc.y)))
    119         return 0;
    120     return !sgn((bb - aa) * (cc - aa));
    121 }
    122 
    123 bool checkline(const point &aa, const point &bb, const point &cc, const point &dd)
    124 //线段是否相交
    125 {
    126     int c1 = sgn((bb - aa) * (cc - aa)), c2 = sgn((bb - aa) * (dd - aa)), 
    127     c3 = sgn((dd - cc) * (aa - cc)), c4 = sgn((dd - cc) * (bb - cc));
    128     if(c1 * c2 < 0 && c3 * c4 < 0)
    129         return 1;//规范相交
    130     if(c1 == 0 && c2 == 0)
    131     {
    132         if(min(aa.x, bb.x) > max(cc.x, dd.x) || min(cc.x, dd.x) > max(aa.x, bb.x)
    133         || min(aa.y, bb.y) > max(cc.y, dd.y) || min(cc.y, dd.y) > max(aa.y, bb.y))
    134             return 0;
    135         return 1;//共线有重叠
    136     }
    137     if(online(cc, aa, bb) || online(dd, aa, bb) 
    138     || online(aa, cc, dd) || online(bb, cc, dd))
    139         return 1;//端点相交
    140     return 0;
    141 }
    142 
    143 point getpoint(const point &aa, const point &bb,
    144  const point &cc, const point &dd)
    145 //两直线交点
    146 {
    147     double a1, b1, c1, a2, b2, c2;
    148     point re;
    149     a1 = aa.y - bb.y;
    150     b1 = bb.x - aa.x;
    151     c1 = aa * bb;
    152     a2 = cc.y - dd.y;
    153     b2 = dd.x - cc.x;
    154     c2 = cc * dd;
    155     //以下为交点横纵坐标
    156     re.x = (c1 * b2 - c2 * b1) / (a2 * b1 - a1 * b2);
    157     re.y = (a2 * c1 - a1 * c2) / (a1 * b2 - a2 * b1);
    158     return re;
    159 }
    160 
    161 bool protrusion(point aa[])
    162 //判断多边形凹(凸)
    163 {
    164     int flag = sgn((aa[1] - aa[0]) * (aa[2] - aa[0]));
    165     for(int i = 1; i < n; ++i)
    166         if(sgn((aa[(i + 1) % n] - aa[i]) * (aa[(i + 2) % n] - aa[i])) != flag)
    167             return 1;
    168     return 0;
    169 }
    170 
    171 bool inpolygon(const point &aa)
    172 //点在凸多边形内(外)
    173 {
    174     int flag = sgn((a[0] - aa) * (a[1] - aa));
    175     for(int i = 1; i < n; ++i)
    176         if(sgn((a[i] - aa) * (a[(i + 1) % n] - aa)) != flag)
    177             return 0;
    178     return 1;
    179 }
    180 
    181 void transline(line &aa, double dist)
    182 //逆时针方向平移线段
    183 {
    184     double d = sqrt((aa.p1.x - aa.p2.x) * (aa.p1.x - aa.p2.x) + 
    185     (aa.p1.y - aa.p2.y) * (aa.p1.y - aa.p2.y));
    186     point ta;
    187     ta.x = aa.p1.x + dist / d * (aa.p1.y - aa.p2.y);
    188     ta.y = aa.p1.y - dist / d * (aa.p1.x - aa.p2.x);
    189     aa.p2 = ta + aa.p2 - aa.p1;
    190     aa.p1 = ta;
    191 }
    192 
    193 void convexhull(point aa[], point bb[])
    194 //凸包
    195 {
    196     int len = 0;
    197     sort(aa, aa + n, cmp);
    198     bb[len++] = aa[0];//bb数组要开2倍(防止出现直线)
    199     bb[len++] = aa[1];
    200     for(int i = 2; i < n ;++i)
    201     {
    202         while(len > 1 && (aa[i] - bb[len - 2]) * (bb[len - 1] - bb[len - 2]) > 0)
    203         //若严格则加上等于
    204             --len;
    205         bb[len++] = aa[i];
    206     }
    207     int t = len;
    208     for(int i = n - 2; i >= 0; --i)
    209     {
    210         while(len > t && (aa[i] - bb[len - 2]) * (bb[len - 1] - bb[len - 2]) > 0)
    211         //同上
    212             --len;
    213         bb[len++] = aa[i];
    214     }
    215     --len;
    216     n = len;
    217 }
    218 
    219 bool checkout(const line &aa, const line &bb, const line &cc)
    220 //检查交点是否在向量顺时针侧
    221 {
    222     point p = getpoint(aa.p1, aa.p2, bb.p1, bb.p2);
    223     return (cc.p1 - p) * (cc.p2 - p) < 0;//如果不允许共线或算面积 则此处不取等
    224 }
    225 
    226 double halfplane(point aa[], line bb[])
    227 //半平面交 
    228 {
    229     sort(bb, bb + n, cmpl);
    230     int n2 = 1;
    231     for(int i = 1; i < n; ++i)
    232     {
    233         if(bb[i].ang - bb[i - 1].ang > eps)
    234             ++n2;
    235         bb[n2 - 1]= bb[i];
    236     }
    237     n = n2;
    238     int front = 0, tail = 0;
    239     q[tail++] = bb[0], q[tail++] = bb[1];
    240     for(int i = 2; i < n; ++i)
    241     {
    242         while(front + 1 < tail && checkout(q[tail - 2], q[tail - 1], bb[i]))
    243             --tail;
    244         while(front + 1 < tail && checkout(q[front], q[front + 1], bb[i]))
    245             ++front;
    246         q[tail++] = bb[i];
    247     }
    248     while(front + 2 < tail && checkout(q[tail - 2], q[tail - 1], q[front]))
    249         --tail;
    250     while(front + 2 < tail && checkout(q[front], q[front + 1], q[tail - 1]))
    251         ++front;
    252     if(front + 2 >= tail)
    253         return 0;
    254     int j = 0;
    255     for(int i = front; i < tail; ++i, ++j)
    256     {
    257         aa[j] = getpoint(q[i].p1, q[i].p2, q[(i != tail - 1 ? i + 1 : front)].p1,
    258          q[(i != tail - 1 ? i + 1 : front)].p2);
    259     }
    260     double re = 0;
    261     for(int i = 1; i < j - 1; ++i)
    262         re += (aa[i] - aa[0]) * (aa[i + 1] - aa[0]);
    263     return abs(re * 0.5);
    264 }
    265 
    266 double calipers(point aa[])
    267 //旋转卡壳
    268 {
    269     double re = 0;
    270     aa[n] = aa[0];
    271     int now = 1;
    272     for(int i = 0; i < n; ++i)
    273     {
    274         while((aa[i + 1] - aa[i]) * (aa[now + 1] - aa[i]) >
    275         (aa[i + 1] - aa[i]) * (aa[now] - aa[i]))
    276             now = (now == n - 1 ? 0 : now + 1);
    277         re = max(re, getdist2(aa[now] - aa[i]));
    278     }
    279     return re;
    280 }
    281 
    282 line bisector(const point &aa, const point &bb)
    283 //中垂线(正方形)
    284 {
    285     double mx, my;
    286     mx = (aa.x + bb.x) / 2;
    287     my = (aa.y + bb.y) / 2;
    288     line cc;
    289     cc.p1.x = mx - (aa.y - bb.y) / 2;
    290     cc.p1.y = my + (aa.x - bb.x) / 2;
    291     cc.p2 = aa + bb - cc.p1;
    292     cc.getang();
    293     return cc;
    294 }
    295 
    296 point rotate(const point &p, double cost, double sint)
    297 //逆时针向量旋转
    298 {
    299     double x = p.x, y = p.y;
    300     return point(x * cost - y * sint, x * sint + y * cost);
    301 }
    302 
    303 void getpoint(circle c1, circle c2)
    304 //已确保两圆有交点时求出两圆交点
    305 {
    306     long double dab = sqrt(getdist2(point(c1.x, c1.y) - 
    307     point(c2.x, c2.y)));
    308     if(c1.r > c2.r)
    309         swap(c1, c2);
    310     long double cost = (c1.r * c1.r + dab * dab - c2.r * c2.r) / 
    311     (c1.r * dab * 2);
    312     long double sint = sqrt(1 - cost * cost);
    313     point re = rotate(point(c2.x, c2.y) - point(c1.x, c1.y), cost, sint);
    314     re.x = c1.x + re.x * (c1.r / dab);
    315     re.y = c1.y + re.y * (c1.r / dab);
    316     point re2 = rotate(point(c2.x, c2.y) - point(c1.x, c1.y), cost, -sint);
    317     re2.x = c1.x + re2.x * (c1.r / dab);
    318     re2.y = c1.y + re2.y * (c1.r / dab);
    319 }
    320 
    321 double mycos(double B, double C, double A)
    322 //余弦定理 给定边长
    323 {
    324     return (B * B + C * C - A * A) / (B * C * 2);
    325 }
    326 
    327 double mycos2(const point &aa, const point &bb, const point &cc)
    328 //余弦定理 给定点坐标
    329 {
    330     double C2 = getdist2(aa - bb), A2 = getdist2(bb - cc), B2 = getdist2(cc - aa);
    331     return (B2 + C2 - A2) / (sqrt(B2 * C2) * 2);
    332 }
    333 
    334 point mirror_point(const point &aa, const point &bb, const point &cc)
    335 //轴对称点 也可用来求垂足
    336 {
    337     double cost, sint;
    338     cost = mycos2(bb, cc, aa);
    339     sint = sqrt(1 - cost * cost);
    340     if((cc - bb) * (aa - bb) > 0)
    341         sint = -sint;
    342     point re;
    343     re = rotate(aa - bb, cost, sint) + bb;
    344     re = rotate(re - bb, cost, sint) + bb;
    345     return re;
    346 }
    347 
    348 double area(const point &aa, const point &bb, const point &cc)
    349 //求三角形面积
    350 {
    351     return abs((bb - aa) * (cc - aa) / 2); 
    352 }
    353 
    354 void max_triangle(const point aa[])
    355 //求凸包上最大三角形
    356 {
    357     double ans = 0;
    358     int p1, p2, p3;
    359     for(int i = 0; i < n; ++i)
    360     {
    361         int j = (i + 1) % n;
    362         int k = (j + 1) % n;
    363         while(k != i && area(aa[i], aa[j], aa[k]) < area(aa[i], aa[j], aa[(k + 1) % n]))
    364             k = (k + 1) % n;
    365         if(k == i)
    366             continue;
    367         int kk = (k + 1) % n;
    368         while(j != kk && k != i)
    369         {
    370             if(ans < area(aa[i], aa[j], aa[k]))
    371             {
    372                 ans = area(aa[i], aa[j], aa[k]);//三角形面积
    373                 p1 = i;
    374                 p2 = j;
    375                 p3 = k;
    376             }
    377             while(k != i && area(aa[i], aa[j], aa[k]) < area(aa[i], aa[j], aa[(k + 1) % n]))
    378                 k = (k + 1) % n;
    379             j = (j + 1) % n;
    380         }
    381     }
    382     point q1, q2, q3;
    383     q1 = b[p2] + b[p3] - b[p1];
    384     q2 = b[p1] + b[p3] - b[p2];
    385     q3 = b[p1] + b[p2] - b[p3];
    386     //三角形上三个点
    387 }
    388 
    389 void get_panel(const point3 &p1, const point3 &p2, const point3 &p3,
    390 double &A, double &B, double &C, double &D)
    391 //由三点确定一个平面方程
    392 {
    393     A = ((p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y - p1.y));
    394     B = ((p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z - p1.z));
    395     C = ((p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x));
    396     D = (-(A * p1.x + B * p1.y + C * p1.z));
    397 }
    398 
    399 double dist_panel(const point3 &pt, double A, double B, double C, double D)
    400 //点到平面距离
    401 {
    402     return abs(A * pt.x + B * pt.y + C * pt.z + D) / 
    403     sqrt(A * A + B * B + C * C);
    404 }
    405 
    406 void hints()
    407 {
    408     //皮克定理 ans = s - point / 2 + 1
    409     //atan2一定要先作差 再取模 再取劣弧
    410     //精度不够时尝试用余弦定理替代三角函数
    411     //算出sin cos tan中的一种后 其他的直接公式算出
    412     /*
    413     四面体重心
    414     x1=(s1*x1+s2*x2+s3*x3+s4*x4)/(s1+s2+s3+s4);
    415     y1=(s1*y1+s2*y2+s3*y3+s4*y4)/(s1+s2+s3+s4);
    416     z1=(s1*z1+s2*z2+s3*z3+s4*z4)/(s1+s2+s3+s4);
    417     */
    418 }
    419 
    420 int main()
    421 {
    422     return 0;
    423 }
  • 相关阅读:
    h5布局之道(最终篇)
    javascript 数组的常用方法总结
    排序算法之简单排序算法
    浅谈h5移动端页面的适配问题
    开园子啦(浅谈移动端以及h5的发展)
    Android开发(二):RelativeLayout、FrameLayout、LinearLayout、TableLayout、AbsoluteLayout各种Layout属性
    Android开发(一):android环境搭建
    为何没有人用DELPHI IDHTTP + WEB做三层应用
    Asp.net学习1-弹出消息框
    处理SQL函数IN问题
  • 原文地址:https://www.cnblogs.com/sagitta/p/5324123.html
Copyright © 2011-2022 走看看