zoukankan      html  css  js  c++  java
  • 10.15T1 容斥原理+二项式定理优化

    这题其实一眼就知道肯定要容斥了,分为行列单独容斥,最后交叉 的时候容斥一下就有70分了(暴力容斥)

    70分题解:

    code:

     1 #include<iostream>
     2 #include<cstdio>
     3 #define N 5000006
     4 using namespace std;
     5 const long long mod=998244353;
     6 long long n,k;
     7 long long jie[N],ci[N],c[3001][3001];
     8 void pre() {
     9     ci[0]=1;
    10     for(int i=1; i<=n*n; i++)ci[i]=ci[i-1]*k%mod;
    11     for (int i=0; i<=n; i++)
    12         for (int j=0; j<=i; j++)
    13             if (j==0||i==j) c[i][j]=1;
    14             else c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
    15 }
    16 int main() {
    17 //    freopen("magic.in","r",stdin);
    18 //    freopen("magic.out","w",stdout);
    19     cin>>n>>k;
    20     pre();
    21     long long ans=0;
    22     for(long long i=1; i<=n; i++) {
    23         if(i&1) {
    24             ans+=((ci[(n-i)*n]*c[n][i])%mod*ci[i])%mod;
    25             ans+=mod;
    26             ans%=mod;
    27         } else {
    28             ans-=((ci[(n-i)*n]*c[n][i])%mod*ci[i])%mod;
    29             ans+=mod;
    30             ans%=mod;
    31         }
    32     }
    33     ans*=2;
    34     for(long long i=1; i<=n; i++) {
    35         for(long long j=1; j<=n; j++) {
    36             if((i+j)&1) {
    37                 ans+=(ci[((n-(i+j))*n)+i*j]*c[n][i])%mod*c[n][j]%mod*k%mod;
    38                 ans%=mod;
    39             } else {
    40                 ans-=(ci[((n-(i+j))*n)+i*j]*c[n][i])%mod*c[n][j]%mod*k%mod;
    41                 ans=(ans+mod)%mod;
    42             }
    43         }
    44     }
    45     cout<<ans;
    46     return 0;
    47 }

    100分:

    官方code:

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 #include<set>
     7 #include<queue>
     8 #include<ctime>
     9 #define MAXN 200005
    10 #define ll long long
    11 #define maxn 15
    12 #define maxs 1000005
    13 #define inf 1e9
    14 #define eps 1e-9
    15 using namespace std;
    16 inline char gc() {
    17     static char now[1<<16],*S,*T;
    18     if (T==S) {
    19         T=(S=now)+fread(now,1,1<<16,stdin);
    20         if (T==S) return EOF;
    21     }
    22     return *S++;
    23 }
    24 inline ll readlong() {
    25     ll x=0,f=1;
    26     char ch=getchar();
    27     while(ch<'0'||ch>'9') {
    28         if(ch=='-')f=-1;
    29         ch=getchar();
    30     }
    31     while(ch>='0'&&ch<='9') {
    32         x*=10;
    33         x+=ch-'0';
    34         ch=getchar();
    35     }
    36     return x*f;
    37 }
    38 const int N=1000005;
    39 const int mod=998244353;
    40 ll res,ans,n,k;
    41 ll fac[N],inv[N];
    42 void update(ll &x,ll y) {
    43     x+=y;
    44     if(x<0) {
    45         x+=mod;
    46     }
    47     if(x>=mod) {
    48         x-=mod;
    49     }
    50 }
    51 ll ksm(ll x,ll k) {
    52     update(x,0);
    53     ll ret=1;
    54     ll ans=x;
    55     while(k) {
    56         if(k&1) {
    57             ret=ret*ans%mod;
    58         }
    59         ans=ans*ans%mod;
    60         k>>=1;
    61     }
    62     return ret;
    63 }
    64 ll calc(ll x,ll y) {
    65     if(x<y) {
    66         return 0;
    67     }
    68     if(x==y) {
    69         return 1;
    70     }
    71     return 1ll*fac[x]*inv[y]%mod*inv[x-y]%mod;
    72 }
    73 int main() {
    74     freopen("magic.in","r",stdin);
    75     freopen("magic.out","w",stdout);
    76     n=readlong();
    77     k=readlong();
    78     fac[0]=1;
    79     for(int i=1; i<=n; i++)fac[i]=fac[i-1]*i%mod;
    80     inv[n]=ksm(fac[n],mod-2);
    81     for(int i=n-1; i>=0; i--)inv[i]=inv[i+1]*(i+1)%mod;
    82     for(int i=1; i<=n; i++) {
    83         int a=1ll*calc(n,i)*ksm(-1,i+1)%mod;
    84         int x=ksm(k,(1ll*n*(n-i)+i)%(mod-1));
    85         update(ans,1ll*a*x%mod);
    86     }
    87     ans=2*ans%mod;
    88     for(int i=0; i<n; i++) {
    89         int tmp=mod-ksm(k,i);
    90         int x=(ksm(tmp+1,n)+mod-ksm(tmp,n))%mod;
    91         int a=1ll*calc(n,i)*ksm(-1,i+1)%mod;
    92         update(res,1ll*a*x%mod);
    93     }
    94     res=k*res%mod;
    95     printf("%lld
    ",(ans+res)%mod);
    96     return 0;
    97 }

    本人code:

     1 #include<iostream>
     2 #include<cstdio>
     3 #define N 1000005
     4 using namespace std;
     5 const long long mod=998244353;
     6 long long n,k;
     7 long long jie[N],inv[N];
     8 long long ksm(long long a,long long b) {
     9     long long ans=1;
    10     for(; b; b>>=1) {
    11         if(b&1) {
    12             ans*=a;
    13             ans%=mod;
    14         }
    15         a*=a;
    16         a%=mod;
    17     }
    18     return ans;
    19 }
    20 long long read() {
    21     long long x=0,f=1;
    22     char c=getchar();
    23     while(!isdigit(c)) {
    24         if(c=='-')f=-1;
    25         c=getchar();
    26     }
    27     while(isdigit(c)) {
    28         x=(x<<3)+(x<<1)+c-'0';
    29         c=getchar();
    30     }
    31     return x*f;
    32 }
    33 long long C(long long a,long long b) {
    34     return (((jie[a]*inv[b])%mod*inv[a-b])%mod+mod)%mod;
    35 }
    36 void pre() {
    37     jie[0]=1;
    38     for(long long i=1; i<=n; i++)jie[i]=jie[i-1]*i%mod;
    39     inv[n]=ksm(jie[n],mod-2);
    40     for(long long i=n-1; i>=0; i--)inv[i]=inv[i+1]*(i+1)%mod;
    41 }
    42 int main() {
    43     n=read(),k=read();
    44     pre();
    45     long long ans=0;
    46     for(long long i=1; i<=n; i++) {
    47         if(i&1) {
    48             ans+=C(n,i)*ksm(k,(n-i)*n)%mod*ksm(k,i);
    49             ans+=mod;
    50             ans%=mod;
    51         } else {
    52             ans-=C(n,i)*ksm(k,(n-i)*n)%mod*ksm(k,i);
    53             ans+=mod;
    54             ans%=mod;
    55         }
    56     }
    57     ans*=2;
    58     ans%=mod;
    59     for(long long i=0; i<n; i++) {
    60         if(i&1) {
    61             long long temp1=C(n,i);
    62             long long temp2=(1-ksm(k,i)+2*mod)%mod;
    63             long long temp3=ksm(k,i);
    64             temp2=ksm(temp2,n);
    65             temp3=ksm(temp3,n);
    66             if(n&1){
    67                 temp3=-temp3;
    68             }
    69             ans+=k*(temp1*(temp2-temp3)%mod+mod)%mod;
    70             ans+=mod;
    71             ans%=mod;
    72         } else {
    73             long long temp1=C(n,i);
    74             long long temp2=(1-ksm(k,i)+2*mod)%mod;
    75             long long temp3=ksm(k,i);
    76             temp2=ksm(temp2,n);
    77             temp3=ksm(temp3,n);
    78             if(n&1){
    79                 temp3=-temp3;
    80             }
    81             ans-=k*(temp1*(temp2-temp3)%mod+mod)%mod;
    82             ans+=mod;
    83             ans%=mod; 
    84         }
    85     }
    86     cout<<ans;
    87     return 0;
    88 }

    over

  • 相关阅读:
    【LuoguP4156】论战捆竹竿
    各种需要背记的图论知识
    SSD:TensorFlow中的单次多重检测器
    YOLO: 3 步实时目标检测安装运行教程 [你看那条狗,好像一条狗!]
    Tensorflow 基于分层注意网络的文件分类器
    StarSpace是用于高效学习实体向量的通用神经模型
    vrn:基于直接体积回归的单幅图像大姿态三维人脸重建
    TensorFlow官方文档
    Machine Learning From Scratch-从头开始机器学习
    Awesome-Text-Classification:文本分类资源合集
  • 原文地址:https://www.cnblogs.com/saionjisekai/p/9791691.html
Copyright © 2011-2022 走看看