zoukankan      html  css  js  c++  java
  • GAN tensorflow 实作

    从2014年Ian Goodfellow提出GANs(Generative adversarial networks)以来,GANs可以说是目前深度学习领域最为热门的研究内容之一,这种可以人工生成数据的方法给我们带来了丰富的想象。有研究者已经能够自动生成相当真实的卧室、专辑封面、人脸等图像,并且在此基础上做了一些有趣的事情。当然那些工作可能会相当困难,下面我们来实现一个简单的例子,建立一个能够生成手写数字的GAN。

    GAN architecture

    首先回顾一下GAN的结构
    Generative adversarial networks包含了两个部分,一个是生成器generator ,一个是判别器discriminator 。discriminator能够评估给定一个图像和真实图像的相似程度,或者说有多大可能性是人工生成的图像。discriminator 实质上相当于一个二分类器,在我们的例子中它是一个CNN。generator能根据随机输入的值来得到一个图像,在我们的例子中的generator是deconvolutional neural network。在整个训练迭代过程中,生成器和判别器网络的weights和biases的值依然会根据误差反向传播理论来训练得到。discriminator需要学习如何分辨real images和generator制造的fake images。同时generator会根据discriminator的反馈结果去学习如何生成更加真实的图像以至于discriminator不能分辨。

    Loading MNIST data

    首先导入tensorflow等需要用到的函数库,TensorFlow中提取了能够非常方便地导入MNIST数据的read_data_sets函数。

    import tensorflow as tf
    import numpy as np
    import datetime
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/")
    

    MNIST中每个图像的初始格式是一个784维的向量。可以使用reshape还原成28x28的图像。

    sample_image = mnist.train.next_batch(1)[0]
    print(sample_image.shape)
    
    sample_image = sample_image.reshape([28, 28])
    plt.imshow(sample_image, cmap='Greys')
    

    Discriminator network

    判别器网络实际上和CNN相似,包含两个卷积层和两个全连接层。

    def discriminator(images, reuse_variables=None):
        with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables) as scope:
            # 第一个卷积层
            # 使用32个5 x 5卷积模板
            d_w1 = tf.get_variable('d_w1', [5, 5, 1, 32], initializer=tf.truncated_normal_initializer(stddev=0.02))
            d_b1 = tf.get_variable('d_b1', [32], initializer=tf.constant_initializer(0))
            d1 = tf.nn.conv2d(input=images, filter=d_w1, strides=[1, 1, 1, 1], padding='SAME')
            d1 = d1 + d_b1
            d1 = tf.nn.relu(d1)
            d1 = tf.nn.avg_pool(d1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
            # 第二个卷积层
            # 使用64个5 x 5卷积模板,每个模板包含32个通道
            d_w2 = tf.get_variable('d_w2', [5, 5, 32, 64], initializer=tf.truncated_normal_initializer(stddev=0.02))
            d_b2 = tf.get_variable('d_b2', [64], initializer=tf.constant_initializer(0))
            d2 = tf.nn.conv2d(input=d1, filter=d_w2, strides=[1, 1, 1, 1], padding='SAME')
            d2 = d2 + d_b2
            d2 = tf.nn.relu(d2)
            d2 = tf.nn.avg_pool(d2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
            # 第一个全连接层
            d_w3 = tf.get_variable('d_w3', [7 * 7 * 64, 1024], initializer=tf.truncated_normal_initializer(stddev=0.02))
            d_b3 = tf.get_variable('d_b3', [1024], initializer=tf.constant_initializer(0))
            d3 = tf.reshape(d2, [-1, 7 * 7 * 64])
            d3 = tf.matmul(d3, d_w3)
            d3 = d3 + d_b3
            d3 = tf.nn.relu(d3)
    
            # 第二个全连接层
            d_w4 = tf.get_variable('d_w4', [1024, 1], initializer=tf.truncated_normal_initializer(stddev=0.02))
            d_b4 = tf.get_variable('d_b4', [1], initializer=tf.constant_initializer(0))
            d4 = tf.matmul(d3, d_w4) + d_b4
    
            # 最后输出一个非尺度化的值
            return d4
    

    Generator network


    生成器根据输入的随机的d维向量,最终输出一个28 x 28图像(实际用784维向量表示)。在生成器的每层将会使用到ReLU激活函数和batch normalization。
    batch normalization 可能会有两个好处:更快的训练速度和更高的全局准确率。

    def generator(z, batch_size, z_dim):
        g_w1 = tf.get_variable('g_w1', [z_dim, 3136], dtype=tf.float32, 
                               initializer=tf.truncated_normal_initializer(stddev=0.02))
        g_b1 = tf.get_variable('g_b1', [3136], initializer=tf.truncated_normal_initializer(stddev=0.02))
        g1 = tf.matmul(z, g_w1) + g_b1
        g1 = tf.reshape(g1, [-1, 56, 56, 1])
        g1 = tf.contrib.layers.batch_norm(g1, epsilon=1e-5, scope='bn1')
        g1 = tf.nn.relu(g1)
    
        g_w2 = tf.get_variable('g_w2', [3, 3, 1, z_dim/2], dtype=tf.float32, 
                           initializer=tf.truncated_normal_initializer(stddev=0.02))
        g_b2 = tf.get_variable('g_b2', [z_dim/2], initializer=tf.truncated_normal_initializer(stddev=0.02))
        g2 = tf.nn.conv2d(g1, g_w2, strides=[1, 2, 2, 1], padding='SAME')
        g2 = g2 + g_b2
        g2 = tf.contrib.layers.batch_norm(g2, epsilon=1e-5, scope='bn2')
        g2 = tf.nn.relu(g2)
        g2 = tf.image.resize_images(g2, [56, 56])
    
        g_w3 = tf.get_variable('g_w3', [3, 3, z_dim/2, z_dim/4], dtype=tf.float32, 
                           initializer=tf.truncated_normal_initializer(stddev=0.02))
        g_b3 = tf.get_variable('g_b3', [z_dim/4], initializer=tf.truncated_normal_initializer(stddev=0.02))
        g3 = tf.nn.conv2d(g2, g_w3, strides=[1, 2, 2, 1], padding='SAME')
        g3 = g3 + g_b3
        g3 = tf.contrib.layers.batch_norm(g3, epsilon=1e-5, scope='bn3')
        g3 = tf.nn.relu(g3)
        g3 = tf.image.resize_images(g3, [56, 56])
    
        g_w4 = tf.get_variable('g_w4', [1, 1, z_dim/4, 1], dtype=tf.float32, 
                           initializer=tf.truncated_normal_initializer(stddev=0.02))
        g_b4 = tf.get_variable('g_b4', [1], initializer=tf.truncated_normal_initializer(stddev=0.02))
        g4 = tf.nn.conv2d(g3, g_w4, strides=[1, 2, 2, 1], padding='SAME')
        g4 = g4 + g_b4
        g4 = tf.sigmoid(g4)
        
        # 输出g4的维度: batch_size x 28 x 28 x 1
        return g4
    

    Training a GAN

    # 清除默认图的堆栈,并设置全局图为默认图
    tf.reset_default_graph()
    batch_size = 50
    
    z_placeholder = tf.placeholder(tf.float32, [None, z_dimensions], name='z_placeholder') 
    
    x_placeholder = tf.placeholder(tf.float32, shape = [None,28,28,1], name='x_placeholder') 
    
    Gz = generator(z_placeholder, batch_size, z_dimensions) 
    Dx = discriminator(x_placeholder) 
    Dg = discriminator(Gz, reuse_variables=True)
    
    #discriminator 的loss 分为两部分
    d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = Dx, labels = tf.ones_like(Dx)))
    d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = Dg, labels = tf.zeros_like(Dg)))
    d_loss=d_loss_real + d_loss_fake  
    # Generator的目标是生成尽可能真实的图像,所以计算Dg和1的loss
    g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = Dg, labels = tf.ones_like(Dg)))  
    

    上面计算了loss 函数,接下来需要定义优化器optimizer。generator的optimizer只更新generator的网络权值,训练discriminator的时候需要固定generator的网络权值同时更新discriminator的权值。

    tvars = tf.trainable_variables()
    
    #分别保存discriminator和generator的权值
    d_vars = [var for var in tvars if 'd_' in var.name]
    g_vars = [var for var in tvars if 'g_' in var.name]
    
    print([v.name for v in d_vars])
    print([v.name for v in g_vars])
    

    Adam是GAN的最好的优化方法,它利用了自适应学习率和学习惯性。调用Adam's minimize function来寻找最小loss,并且通过var_list来指定需要更新的参数。

    
    d_trainer = tf.train.AdamOptimizer(0.0003).minimize(d_loss, var_list=d_vars)
    g_trainer = tf.train.AdamOptimizer(0.0001).minimize(g_loss, var_list=g_vars)
    

    使用TensorBoard来观察训练情况,打开terminal输入
    tensorboard --logdir=tensorboard/

    打开TensorBoard的地址是http://localhost:6006

    tf.get_variable_scope().reuse_variables()
    
    tf.summary.scalar('Generator_loss', g_loss)
    tf.summary.scalar('Discriminator_loss_real', d_loss_real)
    tf.summary.scalar('Discriminator_loss_fake', d_loss_fake)
    
    images_for_tensorboard = generator(z_placeholder, batch_size, z_dimensions)
    tf.summary.image('Generated_images', images_for_tensorboard, 5)
    merged = tf.summary.merge_all()
    logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
    writer = tf.summary.FileWriter(logdir, sess.graph)
    

    下面进行迭代更新参数。对discriminator先进行预训练,这样对generator的训练有好处。

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    # 对discriminator的预训练
    for i in range(300):
        z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
        real_image_batch = mnist.train.next_batch(batch_size)[0].reshape([batch_size, 28, 28, 1])
        _, __, dLossReal, dLossFake = sess.run([d_trainer_real, d_trainer_fake, d_loss_real, d_loss_fake],
                                               {x_placeholder: real_image_batch, z_placeholder: z_batch})
    
        if(i % 100 == 0):
            print("dLossReal:", dLossReal, "dLossFake:", dLossFake)
    
    # 交替训练 generator和discriminator
    for i in range(100000):
        real_image_batch = mnist.train.next_batch(batch_size)[0].reshape([batch_size, 28, 28, 1])
        z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
    
        # 用 real and fake images对discriminator训练
        _,dLossReal, dLossFake = sess.run([d_trainer,d_loss_real, d_loss_fake],
                                               {x_placeholder: real_image_batch, z_placeholder: z_batch})
    
        # 训练 generator
        z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
        _ = sess.run(g_trainer, feed_dict={z_placeholder: z_batch})
    
        if i % 10 == 0:
            # 更新 TensorBoard 统计
            z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
            summary = sess.run(merged, {z_placeholder: z_batch, x_placeholder: real_image_batch})
            writer.add_summary(summary, i)
    
        if i % 100 == 0:
            # 每 100 iterations, 输出一个生成的图像
            print("Iteration:", i, "at", datetime.datetime.now())
            z_batch = np.random.normal(0, 1, size=[1, z_dimensions])
            generated_images = generator(z_placeholder, 1, z_dimensions)
            images = sess.run(generated_images, {z_placeholder: z_batch})
            plt.imshow(images[0].reshape([28, 28]), cmap='Greys')
            plt.show()
            # 输出discriminator的值
            im = images[0].reshape([1, 28, 28, 1])
            result = discriminator(x_placeholder)
            estimate = sess.run(result, {x_placeholder: im})
            print("Estimate:", estimate)
    

    More

    众所周知,由于GAN的表达能力非常强,几乎能够刻画任意概率分布,GAN的训练过程是非常困难的(容易跑偏)。如果没有找到合适的超参和网络结构,并且进行合理的训练过程,容易在discriminator和generator中间出现一方压倒另一方的情况。
    一种常见失败情况是discriminator压倒generator的时候,对generator生成的每个image,discriminator几乎都能认为是fake image,这时generator几乎找不到下降的梯度。因此对discriminator的输出并没有经过sigmoid 函数(sigmoid function 会将输出推向0或1)。
    另一种失败情况是“mode collapse”,指的是generator发现并利用了discriminator某些漏洞。例如generator发现某个图像a能让discriminator判定为真,那么generator可能会学习到:对任意输入的noise vector z,只需要输出和a几乎相同的图像。
    研究人员已经指出了一部分对建立更加稳定的GAN有帮助的GAN hacks

    Resources

    Ian Goodfellow 最近的GAN教程
    ...

  • 相关阅读:
    软件测试进程&测试类型
    课堂笔记:软件测试知识点汇总小结
    闰年测试程序
    关于 int.parse("abcd") 出错的问题分析及解决方案
    软件测试——字符串检测2.0
    边界值分析法实例分析
    测试管理
    软件评审
    单元测试与集成测试
    白盒测试
  • 原文地址:https://www.cnblogs.com/sandy-t/p/7076401.html
Copyright © 2011-2022 走看看