zoukankan      html  css  js  c++  java
  • python常用模块

    本文目录

    time与datetime模块

    时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型

    格式化的时间字符串(Format String)

    结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)

    1 import time
    2 #--------------------------我们先以当前时间为准,让大家快速认识三种形式的时间
    3 print(time.time()) # 时间戳:1487130156.419527
    4 print(time.strftime("%Y-%m-%d %X")) #格式化的时间字符串:'2017-02-15 11:40:53'
    5 
    6 print(time.localtime()) #本地时区的struct_time
    7 print(time.gmtime())    #UTC时区的struct_time
    %a    Locale’s abbreviated weekday name.     
    %A    Locale’s full weekday name.     
    %b    Locale’s abbreviated month name.     
    %B    Locale’s full month name.     
    %c    Locale’s appropriate date and time representation.     
    %d    Day of the month as a decimal number [01,31].     
    %H    Hour (24-hour clock) as a decimal number [00,23].     
    %I    Hour (12-hour clock) as a decimal number [01,12].     
    %j    Day of the year as a decimal number [001,366].     
    %m    Month as a decimal number [01,12].     
    %M    Minute as a decimal number [00,59].     
    %p    Locale’s equivalent of either AM or PM.    (1)
    %S    Second as a decimal number [00,61].    (2)
    %U    Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Sunday are considered to be in week 0.    (3)
    %w    Weekday as a decimal number [0(Sunday),6].     
    %W    Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Monday are considered to be in week 0.    (3)
    %x    Locale’s appropriate date representation.     
    %X    Locale’s appropriate time representation.     
    %y    Year without century as a decimal number [00,99].     
    %Y    Year with century as a decimal number.     
    %z    Time zone offset indicating a positive or negative time difference from UTC/GMT of the form +HHMM or -HHMM, where H represents decimal hour digits and M represents decimal minute digits [-23:59, +23:59].     
    %Z    Time zone name (no characters if no time zone exists).     
    %%    A literal '%' character.
    格式化字符串的时间格式
    import time
    
    # 时间分为三种形式
    #1、时间戳
    print(time.time())
    start_time=time.time()
    time.sleep(3)
    stop_time=time.time()
    print(stop_time-start_time)
    """
    1545909641.37744
    3.00262451171875
    """
    
    #2、格式化的字符串
    print(time.strftime('%Y-%m-%d %H:%M:%S %p'))
    print(time.strftime('%Y-%m-%d %X %p'))
    """
    2018-12-27 19:26:11 PM
    2018-12-27 19:26:11 PM
    """
    
    #3、struct_time对象
    print(time.localtime()) # 上海:东八区
    print(time.localtime().tm_year)
    print(time.localtime().tm_mday)
    """
    time.struct_time(tm_year=2018, tm_mon=12, tm_mday=27, tm_hour=19, tm_min=26, tm_sec=44, tm_wday=3, tm_yday=361, tm_isdst=0)
    2018
    27
    """
    print(time.gmtime()) # UTC时区
    """
    time.struct_time(tm_year=2018, tm_mon=12, tm_mday=27, tm_hour=11, tm_min=27, tm_sec=12, tm_wday=3, tm_yday=361, tm_isdst=0)
    """
    # 了解的知识
    print(time.localtime(1111111111).tm_hour)
    print(time.gmtime(1111111111).tm_hour)
    #local(seconds)里面放的是秒数,从1970年开始,下面打印的是小时时差
    """
    9
    1
    """
    print(time.mktime(time.localtime()))
    """
    1545911617.0
    """
    
    print(time.strftime('%Y/%m/%d',time.localtime()))
    print(time.strptime('2017/04/08','%Y/%m/%d'))
    
    """
    2018/12/27
    time.struct_time(tm_year=2018, tm_mon=12, tm_mday=27, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=361, tm_isdst=-1)
    """
    
    print(time.asctime(time.localtime()))
    print(time.ctime(12312312321))
    """
    Thu Dec 27 19:54:26 2018
    Mon Feb 29 22:45:21 2360
    """
    了解的知识

    其中计算机认识的时间只能是'时间戳'格式,而程序员可处理的或者说人类能看懂的时间有: '格式化的时间字符串','结构化的时间' ,于是有了下图的转换关系

     1 #--------------------------按图1转换时间
     2 # localtime([secs])
     3 # 将一个时间戳转换为当前时区的struct_time。secs参数未提供,则以当前时间为准。
     4 time.localtime()
     5 time.localtime(1473525444.037215)
     6 
     7 # gmtime([secs]) 和localtime()方法类似,gmtime()方法是将一个时间戳转换为UTC时区(0时区)的struct_time。
     8 
     9 # mktime(t) : 将一个struct_time转化为时间戳。
    10 print(time.mktime(time.localtime()))#1473525749.0
    11 
    12 
    13 # strftime(format[, t]) : 把一个代表时间的元组或者struct_time(如由time.localtime()和
    14 # time.gmtime()返回)转化为格式化的时间字符串。如果t未指定,将传入time.localtime()。如果元组中任何一个
    15 # 元素越界,ValueError的错误将会被抛出。
    16 print(time.strftime("%Y-%m-%d %X", time.localtime()))#2016-09-11 00:49:56
    17 
    18 # time.strptime(string[, format])
    19 # 把一个格式化时间字符串转化为struct_time。实际上它和strftime()是逆操作。
    20 print(time.strptime('2011-05-05 16:37:06', '%Y-%m-%d %X'))
    21 #time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=16, tm_min=37, tm_sec=6,
    22 #  tm_wday=3, tm_yday=125, tm_isdst=-1)
    23 #在这个函数中,format默认为:"%a %b %d %H:%M:%S %Y"。
    View Code

    1 #--------------------------按图2转换时间
    2 # asctime([t]) : 把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 1993'。
    3 # 如果没有参数,将会将time.localtime()作为参数传入。
    4 print(time.asctime())#Sun Sep 11 00:43:43 2016
    5 
    6 # ctime([secs]) : 把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为
    7 # None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。
    8 print(time.ctime())  # Sun Sep 11 00:46:38 2016
    9 print(time.ctime(time.time()))  # Sun Sep 11 00:46:38 2016
    View Code
    2 # sleep(secs)
    3 # 线程推迟指定的时间运行,单位为秒。
    #时间加减
    import datetime
    
    # print(datetime.datetime.now()) #返回 2016-08-19 12:47:03.941925
    #print(datetime.date.fromtimestamp(time.time()) )  # 时间戳直接转成日期格式 2016-08-19
    # print(datetime.datetime.now() )
    # print(datetime.datetime.now() + datetime.timedelta(3)) #当前时间+3天
    # print(datetime.datetime.now() + datetime.timedelta(-3)) #当前时间-3天
    # print(datetime.datetime.now() + datetime.timedelta(hours=3)) #当前时间+3小时
    # print(datetime.datetime.now() + datetime.timedelta(minutes=30)) #当前时间+30分
    
    
    #
    # c_time  = datetime.datetime.now()
    # print(c_time.replace(minute=3,hour=2)) #时间替换
    def progress(percent,width=50):
        if percent > 1:
            percent=1
        show_str=('[%%-%ds]' %width) %(int(width*percent) * '>')
        print('
    %s %d%%' %(show_str,int(100*percent)),end='')
    
    import time
    recv_size=0
    total_size=8097
    while recv_size < total_size:
        time.sleep(0.1)
        recv_size+=100
        percent=recv_size / total_size
        progress(percent)
    打印进度条
    import sys
    import time
    
    def progress(percent,width=50):
        if percent >= 1:
            percent=1
        show_str=('[%%-%ds]' %width) %(int(width*percent)*'#')
        print('
    %s %d%%' %(show_str,int(100*percent)),file=sys.stdout,flush=True,end='')
    
    data_size=1025
    recv_size=0
    while recv_size < data_size:
        time.sleep(0.1) #模拟数据的传输延迟
        recv_size+=1024 #每次收1024
    
        percent=recv_size/data_size #接收的比例
        progress(percent,width=70) #进度条的宽度70
    (二)

     返回目录

    random模块

     1 import random
     2  
     3 print(random.random())#(0,1)----float    大于0且小于1之间的小数
     4  
     5 print(random.randint(1,3))  #[1,3]    大于等于1且小于等于3之间的整数
     6  
     7 print(random.randrange(1,3)) #[1,3)    大于等于1且小于3之间的整数
     8  
     9 print(random.choice([1,'23',[4,5]]))#1或者23或者[4,5]
    10  
    11 print(random.sample([1,'23',[4,5]],2))#列表元素任意2个组合
    12  
    13 print(random.uniform(1,3))#大于1小于3的小数,如1.927109612082716 
    14  
    15  
    16 item=[1,3,5,7,9]
    17 random.shuffle(item) #打乱item的顺序,相当于"洗牌"
    18 print(item)
    import random
    
    def make_code(n):
        res = ''
        for i in range(n):
            s1 = chr(random.randint(65, 90))
            s2 = str(random.randint(0, 9))
            res += random.choice([s1, s2])
        return res
    
    print(make_code(9))
    随机验证码

     返回目录

    os模块

    os模块是与操作系统交互的一个接口

    os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
    os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
    os.curdir  返回当前目录: ('.')
    os.pardir  获取当前目录的父目录字符串名:('..')
    os.makedirs('dirname1/dirname2')    可生成多层递归目录
    os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
    os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
    os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
    os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
    os.remove()  删除一个文件
    os.rename("oldname","newname")  重命名文件/目录
    os.stat('path/filename')  获取文件/目录信息
    os.sep    输出操作系统特定的路径分隔符,win下为"\",Linux下为"/"
    os.linesep    输出当前平台使用的行终止符,win下为"	
    ",Linux下为"
    "
    os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
    os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
    os.system("bash command")  运行shell命令,直接显示
    os.environ  获取系统环境变量
    os.path.abspath(path)  返回path规范化的绝对路径
    os.path.split(path)  将path分割成目录和文件名二元组返回
    os.path.dirname(path)  返回path的目录。其实就是os.path.split(path)的第一个元素
    os.path.basename(path)  返回path最后的文件名。如何path以/或结尾,那么就会返回空值。即os.path.split(path)的第二个元素
    os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
    os.path.isabs(path)  如果path是绝对路径,返回True
    os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
    os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
    os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
    os.path.getatime(path)  返回path所指向的文件或者目录的最后存取时间
    os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
    os.path.getsize(path) 返回path的大小
    View Code
    os路径处理
    #方式一:推荐使用
    import os
    #具体应用
    import os,sys
    possible_topdir = os.path.normpath(os.path.join(
        os.path.abspath(__file__),
        os.pardir, #上一级
        os.pardir,
        os.pardir
    ))
    sys.path.insert(0,possible_topdir)
    
    
    #方式二:不推荐使用
    os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

      返回目录

    sys模块

    1 sys.argv           命令行参数List,第一个元素是程序本身路径
    2 sys.exit(n)        退出程序,正常退出时exit(0)
    3 sys.version        获取Python解释程序的版本信息
    4 sys.maxint         最大的Int值
    5 sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
    6 sys.platform       返回操作系统平台名称

      返回目录

    shutil模块

    高级的 文件、文件夹、压缩包 处理模块

    shutil.copyfileobj(fsrc, fdst[, length])
    将文件内容拷贝到另一个文件中

    1 import shutil
    2  
    3 shutil.copyfileobj(open('old.xml','r'), open('new.xml', 'w'))

    shutil.copyfile(src, dst)
    拷贝文件

    1 shutil.copyfile('f1.log', 'f2.log') #目标文件无需存在

    shutil.copymode(src, dst)
    仅拷贝权限。内容、组、用户均不变

    1 shutil.copymode('f1.log', 'f2.log') #目标文件必须存在

    shutil.copystat(src, dst)
    仅拷贝状态的信息,包括:mode bits, atime, mtime, flags

    1 shutil.copystat('f1.log', 'f2.log') #目标文件必须存在

    shutil.copy(src, dst)
    拷贝文件和权限

    1 import shutil
    2  
    3 shutil.copy('f1.log', 'f2.log')

    shutil.copy2(src, dst)
    拷贝文件和状态信息

    1 import shutil
    2  
    3 shutil.copy2('f1.log', 'f2.log')

    shutil.ignore_patterns(*patterns)
    shutil.copytree(src, dst, symlinks=False, ignore=None)
    递归的去拷贝文件夹

    1 import shutil
    2  
    3 shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*')) #目标目录不能存在,注意对folder2目录父级目录要有可写权限,ignore的意思是排除
    import shutil
    
    shutil.copytree('f1', 'f2', symlinks=True, ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))
    
    '''
    通常的拷贝都把软连接拷贝成硬链接,即对待软连接来说,创建新的文件
    '''
    拷贝软连接

    shutil.rmtree(path[, ignore_errors[, onerror]])
    递归的去删除文件

    1 import shutil
    2  
    3 shutil.rmtree('folder1')

    shutil.move(src, dst)
    递归的去移动文件,它类似mv命令,其实就是重命名。

    1 import shutil
    2  
    3 shutil.move('folder1', 'folder3')

    shutil.make_archive(base_name, format,...)

    创建压缩包并返回文件路径,例如:zip、tar

    创建压缩包并返回文件路径,例如:zip、tar

    • base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,

        如 data_bak                       =>保存至当前路径

        如:/tmp/data_bak =>保存至/tmp/

    • format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
    • root_dir: 要压缩的文件夹路径(默认当前目录)
    • owner: 用户,默认当前用户
    • group: 组,默认当前组
    • logger: 用于记录日志,通常是logging.Logger对象
    1 #将 /data 下的文件打包放置当前程序目录
    2 import shutil
    3 ret = shutil.make_archive("data_bak", 'gztar', root_dir='/data')
    4   
    5   
    6 #将 /data下的文件打包放置 /tmp/目录
    7 import shutil
    8 ret = shutil.make_archive("/tmp/data_bak", 'gztar', root_dir='/data')

    shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:

    import zipfile
    
    # 压缩
    z = zipfile.ZipFile('laxi.zip', 'w')
    z.write('a.log')
    z.write('data.data')
    z.close()
    
    # 解压
    z = zipfile.ZipFile('laxi.zip', 'r')
    z.extractall(path='.')
    z.close()
    ZipFile 压缩解压缩
    import tarfile
    
    # 压缩
    >>> t=tarfile.open('/tmp/egon.tar','w')
    >>> t.add('/test1/a.py',arcname='a.bak')
    >>> t.add('/test1/b.py',arcname='b.bak')
    >>> t.close()
    
    
    # 解压
    >>> t=tarfile.open('/tmp/egon.tar','r')
    >>> t.extractall('/egon')
    >>> t.close()
    TarFile压缩解压缩

      返回目录

    json

      用于处理json格式数据的模块
      json 全称 JavaScrip Object Notation js的对象表示法
      所以json能支持的数据类型就是js支持数据类型

    1 import json
    2 x="[null,true,false,1]"
    3 print(eval(x)) #报错,无法解析null类型,而json就可以
    4 print(json.loads(x)) 

    序列化

      把对象(变量)从内存中变成可存储或传输的过程称之为序列化

      在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等

    1:持久保存状态
    
    需知一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,'状态'会以各种各样有结构的数据类型(也可简单的理解为变量)的形式被保存在内存中。
    
    内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。
    
    在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。
    
    具体的来说,你玩使命召唤闯到了第13关,你保存游戏状态,关机走人,下次再玩,还能从上次的位置开始继续闯关。或如,虚拟机状态的挂起等。
    
    2:跨平台数据交互
    
    序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好实用一种序列化的格式,那么便打破了平台/语言差异化带来的限制,实现了跨平台数据交互。
    
    反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
    为什么要序列化
    如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
    View Code

    常用方法
    序列化:将内存中数据结构转成json,存到硬盘里去
      dump 处理文件
      dumps 处理字符串
    反序列化:硬盘上的数据转成json,再转成内存中的数据结构
      load 处理文件
      loads 处理字符串

         1. 什么是序列化
                序列化指的是将内存中的数据类型转换成一种中间格式,该格式可以用来存到硬盘中或者基于网络传输
    
            2. 为何要序列化
                1. 持久化(把某一时刻程序的运行状态永久保存下来)
                2. 基于网络传输,可以扩平台交互数据
    
            3. 如何序列化
                json:
                    优点:兼容所有语言,可以扩平台交互数据
                    缺点:不能支持所有的python数据类型
                pickle
                    优点:可以支持所有的python数据类型
                    缺点:不能跨平台
    
               json.dumps(数据类型)  json.loads(json格式的字符串)
               json.dump(数据类型,文件对象)   json.load(文件对象)

    JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

     1 import json
     2  
     3 dic={'name':'alvin','age':23,'sex':'male'}
     4 print(type(dic))#<class 'dict'>
     5  
     6 j=json.dumps(dic)
     7 print(type(j))#<class 'str'>
     8  
     9  
    10 f=open('序列化对象','w')
    11 f.write(j)  #-------------------等价于json.dump(dic,f)
    12 f.close()
    13 #-----------------------------反序列化<br>
    14 import json
    15 f=open('序列化对象')
    16 data=json.loads(f.read())#  等价于data=json.load(f)
    import json
    #dct="{'1':111}"#json 不认单引号
    #dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1}
    
    dct='{"1":"111"}'
    print(json.loads(dct))
    
    #conclusion:
    #        无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads
    注意点

      返回目录

    pickle

     1 import pickle
     2  
     3 dic={'name':'alvin','age':23,'sex':'male'}
     4  
     5 print(type(dic))#<class 'dict'>
     6  
     7 j=pickle.dumps(dic)
     8 print(type(j))#<class 'bytes'>
     9  
    10  
    11 f=open('序列化对象_pickle','wb')#注意是w是写入str,wb是写入bytes,j是'bytes'
    12 f.write(j)  #-------------------等价于pickle.dump(dic,f)
    13  
    14 f.close()
    15 #-------------------------反序列化
    16 import pickle
    17 f=open('序列化对象_pickle','rb')
    18  
    19 data=pickle.loads(f.read())#  等价于data=pickle.load(f)
    20  
    21  
    22 print(data['age'])

    Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

      返回目录

    shelve

    一种序列化方式

    使用方法
      1.opne
      2.读写
      3.close
    特点:使用方法比较简单 提供一个文件名字就可以开始读写
      读写的方法和字典一致
      你可以把它当成带有自动序列化功能的字典
    原理: 内部使用的就是pickle 所以 也存在跨平台性差的问题 你自己存的只有你自己知道怎么取

    什么时候用:写一个单机程序时可以考虑

    import shelve
    # 序列化
    sl = shelve.open("shelvetest.txt")
    sl["date"] = "8-13"
    sl["list1"] = ["123","456"]
    sl.close()

    执行结果:

    s2 = shelve.open("shelvetest.txt")
    print(s2.get("list1"))
    s2.close()

    执行结果:

    ['123', '456']

      返回目录

    xml

    xml全称 可扩展标记语言
    标记指的是代表某种含义的字x符 XML<>

    xml的意义:

    为能够在不同的平台间继续数据的交换
    为了使交换的数据能让对方看懂 就需要按照一定的语法规范来书写

    XML语法格式:
            一、任何的起始标签都必须有一个结束标签。
                <tagname></tagname>
                <tagname></tagname>
                <tagname/>  简化写法
    
            二、可以采用另一种简化语法,可以在一个标签中同时表示起始和结束标签。这种语法是在大于符号之前紧跟一个斜线(/),例如<百度百科词条/>。XML解析器会将其翻译成<百度百科词条></百度百科词条>。
            三、标签必须按合适的顺序进行嵌套,所以结束标签必须按镜像顺序匹配起始标签,例如这是一串百度百科中的样例字符串。这好比是将起始和结束标签看作是数学中的左右括号:在没有关闭所有的内部括号之前,是不能关闭外面的括号的。
                <tag1>
                    <tag2>
                        <tag3>
                        </tag3>
                    </tag2>
                </tag1>    大白话  关闭标签应该从内往外 一层一层关闭 顺序不能乱
            四、所有的特性都必须有值。
                特性指的是属性
                <person name="">
                </person>
            五、所有的特性都必须在值的周围加上双引号。
            注意:最外层有且只有一个标签 这个标签称之为根标签
                 第一行应该有文档声明 用于高速计算机怎么理解
                  例如:<?xml version="1.0" encoding="utf-8"?>
                  当标签嵌套的时候会出现层级关系  如果一个标签不被任何别的标签包裹 那他就是根标签(最外层)
            使用场景:
                1.配置文件
                2.常规的数据交换  例如从服务器获取一段新闻
    与json的区别:
                作用是一样的 都是一种数据格式
                xml比json先诞生
                json的数据比xml小
                目前json是主流
            python中的xml处理
                使用到的模块
                ElmentTree 表示整个文件的元素树
    
                Elment 表示一个节点
                    属性
                    1.text      开始标签和结束标签中间的文本
                    2.attrib    所有的属性     字典类型
                    3.tag       标签的名字
                    方法
                        get 获取某个属性的值
                1.解析XML
                    查找标签
                    find      在子标签中获取名字匹配第一个
                    findall   在子标签中获取名字匹配的所有标签
                    iter(tagname)      在全文中查找[匹配的所有标签 返回一个迭代器
                2.生成XML
                    用ElmentTree
                    parse()  解析一个文件
                    getroot() 获取根标签
                    write()  写入到文件
                3.修改xml
                    set 一个属性
                    remove 一个标签
                    append 一个标签
    
    # 语法格式练习: 要求把你的同桌的手机信息用xml来描述
    import xml.etree.ElementTree as et
    
    # 读取xml文档到内存中  得到一个包含所有数据的节点树
    # 每一个标签就称之为一个节点 或 元素
    tree = et.parse("text.xml")
    # 获取根标签
    root = tree.getroot()
    # 获取所有的country   找的是第一个
    print(root.find("country"))
    # 找的是所有
    print(root.findall("country"))
    
    # 获取year
    print(root.iter("country"))
    for i in root.iter("country"):
        print(i)
    
    
    # 遍历整个xml
    for country in root:
        print(country.tag,country.attrib,country.text)
        for t in country:
            print(t.tag, t.attrib, t.text)
    
    
    
    print(root.find("country").get("name"))

    执行结果

    <Element 'country' at 0x00000223E0130688>
    [<Element 'country' at 0x00000223E0130688>, <Element 'country' at 0x00000223E03A0818>, <Element 'country' at 0x00000223E03A09A8>]
    <_elementtree._element_iterator object at 0x00000223E03A5E08>
    <Element 'country' at 0x00000223E0130688>
    <Element 'country' at 0x00000223E03A0818>
    <Element 'country' at 0x00000223E03A09A8>
    country {'name': 'Liechtenstein'} 
            
    rank {'updated': 'yes'} 2
    gdppc {} 141100
    neighbor {'direction': 'E', 'name': 'Austria'} None
    neighbor {'direction': 'W', 'name': 'Switzerland'} None
    newTag {'name': 'DSB'} 123
    country {'name': 'Singapore'} 
            
    rank {'updated': 'yes'} 5
    gdppc {} 59900
    neighbor {'direction': 'N', 'name': 'Malaysia'} None
    newTag {'name': 'DSB'} 123
    country {'name': 'Panama'} 
            
    rank {'updated': 'yes'} 69
    gdppc {} 13600
    neighbor {'direction': 'W', 'name': 'Costa Rica'} None
    neighbor {'direction': 'E', 'name': 'Colombia'} None
    newTag {'name': 'DSB'} 123
    Liechtenstein
    # =============================================修改  第所有的country的year文本  改成加1
    # 读取到内存
    tree = et.parse("text.xml")
    for country in tree.findall("country"):
        # yeartag = country.find("year")
        # yeartag.text = str(int(yeartag.text) + 1)   修改标签文本
    
        # country.remove(country.find("year"))     删除标签
    
        # 添加子标签
        newtag = et.Element("newTag")
        # 文本
        newtag.text = "123"
        #属性
        newtag.attrib["name"] = "DSB"
        #添加
        country.append(newtag)
    
    # 写回到内存
    tree.write("text.xml",encoding="utf-8",xml_declaration=False)
    """
        用代码生成一个xml文档
    
    """
    import xml.etree.ElementTree as et
    # 创建根标签
    root = et.Element("root")
    # 创建节点树
    t1 = et.ElementTree(root)
    
    # 加一个peron标签
    persson = et.Element("person")
    persson.attrib["name"] = "yyh"
    persson.attrib["sex"] = "man"
    persson.attrib["age"] = "20"
    persson.text = "这是一个person标签"
    
    root.append(persson)
    
    # 写入文件
    t1.write("newXML.xml",encoding="utf-8",xml_declaration=True)

      返回目录

    configparser

    配置文件解析模块

    用于提供程序运行所需要的一些信息的文件   后缀 ini cfg

    作用:方便用户修改   例如超时时间

    配置文件内容格式
      只包括两种元素
        section 分区
        option 选项
      一个文件可以有多个section
      一个section可以有多个选项

    核心功能
      1.sections 获取所有分区
      2.options 获取所有选项
      3.get 获取一个值 传入 section option

    注意:大小写不敏感

    # 假装做一个下载功能 最大链接速度可以由用户来控制  用户不会看代码 所以提供一个配置文件
    import configparser
    # 得到配置文件对象
    cfg = configparser.ConfigParser()
    # 读取一个配置文件
    cfg.read("download.ini")
    
    print(cfg.sections())
    print(cfg.options("section1"))
    
    print(type(cfg.get("section1","maxspeed")))
    print(type(cfg.getint("section1","maxspeed")))
    print(cfg.getint("section2","minspeed"))
    
    
    # 修改最大速度为2048
    cfg.set("section1","maxspeed","2048")
    
    cfg.write(open("download.ini","w",encoding="utf-8"))

      返回目录

    hashlib

    """
    
        hashlib
            hash是什么?
                是一种算法
                用于将任意长度的数据,压缩映射到一段固定长度的字符 (提取特征)
    
                hash的特点:
                1.输入数据不同,得到的hash值有可能相同
                2.不能通过hash值来得到输入的值
                3.如果算法相同,无论输入的数据长度是多少,得到的hash值长度相同
    
                因为以上特点常将hash算法用于加密和文件校验
                输入用户名和密码 在代码中与数据库中的判断是否相同
                思考当你的数据需要在网络中传递时 就可能会受到网络攻击
                黑客通过抓包工具就能截获你发送和接收的数据
                所以你的数据 如果涉及到隐私 就应该先加密在发送
    
                加密的方式有很多
                常用的MD5就是一种hash算法
    
    
                常用的提升安全性的手段 就是加盐
                就是把你加密前的数据做一些改动 例如 把顺序反过来
    
    
    """
    # 1、什么叫hash:hash是一种算法(3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法),该算法接受传入的内容,经过运算得到一串hash值
    # 2、hash值的特点是:
    #2.1 只要传入的内容一样,得到的hash值必然一样=====>要用明文传输密码文件完整性校验
    #2.2 不能由hash值返解成内容=======》把密码做成hash值,不应该在网络传输明文密码
    #2.3 只要使用的hash算法不变,无论校验的内容有多大,得到的hash值长度是固定的

     hash算法就像一座工厂,工厂接收你送来的原材料(可以用m.update()为工厂运送原材料),经过加工返回的产品就是hash值

    1 import hashlib
     2  
     3 m=hashlib.md5()# m=hashlib.sha256()
     4  
     5 m.update('hello'.encode('utf8'))
     6 print(m.hexdigest())  #5d41402abc4b2a76b9719d911017c592
     7  
     8 m.update('alvin'.encode('utf8'))
     9  
    10 print(m.hexdigest())  #92a7e713c30abbb0319fa07da2a5c4af
    11  
    12 m2=hashlib.md5()
    13 m2.update('helloalvin'.encode('utf8'))
    14 print(m2.hexdigest()) #92a7e713c30abbb0319fa07da2a5c4af
    15 
    16 '''
    17 注意:把一段很长的数据update多次,与一次update这段长数据,得到的结果一样
    18 但是update多次为校验大文件提供了可能。
    19 '''

    以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。

    1 import hashlib
    2  
    3 # ######## 256 ########
    4  
    5 hash = hashlib.sha256('898oaFs09f'.encode('utf8'))
    6 hash.update('alvin'.encode('utf8'))
    7 print (hash.hexdigest())#e79e68f070cdedcfe63eaf1a2e92c83b4cfb1b5c6bc452d214c1b7e77cdfd1c7
    import hashlib
    passwds=[
        'yb3714',
        'yb1313',
        'yb94139413',
        'yb123456',
        '123456yb',
        'y123b',
        ]
    def make_passwd_dic(passwds):
        dic={}
        for passwd in passwds:
            m=hashlib.md5()
            m.update(passwd.encode('utf-8'))
            dic[passwd]=m.hexdigest()
        return dic
    
    def break_code(cryptograph,passwd_dic):
        for k,v in passwd_dic.items():
            if v == cryptograph:
                print('密码是===>33[46m%s33[0m' %k)
    
    cryptograph='aee949757a2e698417463d47acac93df'
    break_code(cryptograph,make_passwd_dic(passwds))
    模拟撞库破解密码

    python 还有一个 hmac 模块,它内部对我们创建 key 和 内容 进行进一步的处理然后再加密:

    1 import hmac
    2 h = hmac.new('alvin'.encode('utf8'))
    3 h.update('hello'.encode('utf8'))
    4 print (h.hexdigest())#320df9832eab4c038b6c1d7ed73a5940
    #要想保证hmac最终结果一致,必须保证:
    #1:hmac.new括号内指定的初始key一样
    #2:无论update多少次,校验的内容累加到一起是一样的内容
    
    import hmac
    
    h1=hmac.new(b'egon')
    h1.update(b'hello')
    h1.update(b'world')
    print(h1.hexdigest())
    
    h2=hmac.new(b'egon')
    h2.update(b'helloworld')
    print(h2.hexdigest())
    
    h3=hmac.new(b'egonhelloworld')
    print(h3.hexdigest())
    
    '''
    f1bf38d054691688f89dcd34ac3c27f2
    f1bf38d054691688f89dcd34ac3c27f2
    bcca84edd9eeb86f30539922b28f3981
    '''
    注意注意!!

      返回目录

    subprocess

    """
        subprocess模块
            sub       子
            process  进程
        什么是进程
            正在进行中的程序   每当打开一个程序就会开启一个进程
            每个进程包含运行程序所需的所有资源
            正常情况下 不可以跨进程访问数据
            但是有些情况写就需要访问别的进程数据   提供一个叫做管道的对象 专门用于跨进程通讯
    
        作用:用于执行系统命令
    
        常用方法
            run     返回一个表示执行结果的对象
            call    返回的执行的状态码
    
        总结  subprocess的好处是可以获取指令的执行结果
              subprocess执行指令时 可以在子进程中 这样避免造成主进程卡死
        注意 管道的read方法和文件的read有相同的问题 read后光标会到文件末尾 导致第二次无法read到数据
    
    
    """
     1 import  subprocess
     2 
     3 '''
     4 sh-3.2# ls /Users/egon/Desktop |grep txt$
     5 mysql.txt
     6 tt.txt
     7 事物.txt
     8 '''
     9 
    10 res1=subprocess.Popen('ls /Users/jieli/Desktop',shell=True,stdout=subprocess.PIPE)
    11 res=subprocess.Popen('grep txt$',shell=True,stdin=res1.stdout,
    12                  stdout=subprocess.PIPE)
    13 
    14 print(res.stdout.read().decode('utf-8'))
    15 
    16 
    17 #等同于上面,但是上面的优势在于,一个数据流可以和另外一个数据流交互,可以通过爬虫得到结果然后交给grep
    18 res1=subprocess.Popen('ls /Users/jieli/Desktop |grep txt$',shell=True,stdout=subprocess.PIPE)
    19 print(res1.stdout.read().decode('utf-8'))
    20 
    21 
    22 #windows下:
    23 # dir | findstr 'test*'
    24 # dir | findstr 'txt$'
    25 import subprocess
    26 res1=subprocess.Popen(r'dir C:UsersAdministratorPycharmProjects	est函数备课',shell=True,stdout=subprocess.PIPE)
    27 res=subprocess.Popen('findstr test*',shell=True,stdin=res1.stdout,
    28                  stdout=subprocess.PIPE)
    29 
    30 print(res.stdout.read().decode('gbk')) #subprocess使用当前系统默认编码,得到结果为bytes类型,在windows下需要用gbk解码

    详细参考官网

      返回目录

    logging

    日志级别

    CRITICAL = 50 #FATAL = CRITICAL
    ERROR = 40
    WARNING = 30 #WARN = WARNING
    INFO = 20
    DEBUG = 10
    NOTSET = 0 #不设置

    为logging模块指定全局配置,针对所有logger有效,控制打印到文件中

    可在logging.basicConfig()函数中通过具体参数来更改logging模块默认行为,可用参数有
    filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
    filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
    format:指定handler使用的日志显示格式。 
    datefmt:指定日期时间格式。 
    level:设置rootlogger(后边会讲解具体概念)的日志级别 
    stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
    
    
    
    #格式
    %(name)s:Logger的名字,并非用户名,详细查看
    
    %(levelno)s:数字形式的日志级别
    
    %(levelname)s:文本形式的日志级别
    
    %(pathname)s:调用日志输出函数的模块的完整路径名,可能没有
    
    %(filename)s:调用日志输出函数的模块的文件名
    
    %(module)s:调用日志输出函数的模块名
    
    %(funcName)s:调用日志输出函数的函数名
    
    %(lineno)d:调用日志输出函数的语句所在的代码行
    
    %(created)f:当前时间,用UNIX标准的表示时间的浮 点数表示
    
    %(relativeCreated)d:输出日志信息时的,自Logger创建以 来的毫秒数
    
    %(asctime)s:字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
    
    %(thread)d:线程ID。可能没有
    
    %(threadName)s:线程名。可能没有
    
    %(process)d:进程ID。可能没有
    
    %(message)s:用户输出的消息
    logging.basicConfig()
    #========使用
    import logging
    logging.basicConfig(filename='access.log',
                        format='%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',
                        level=10)
    
    logging.debug('调试debug')
    logging.info('消息info')
    logging.warning('警告warn')
    logging.error('错误error')
    logging.critical('严重critical')
    
    
    
    
    
    #========结果
    access.log内容:
    2017-07-28 20:32:17 PM - root - DEBUG -test:  调试debug
    2017-07-28 20:32:17 PM - root - INFO -test:  消息info
    2017-07-28 20:32:17 PM - root - WARNING -test:  警告warn
    2017-07-28 20:32:17 PM - root - ERROR -test:  错误error
    2017-07-28 20:32:17 PM - root - CRITICAL -test:  严重critical
    
    part2: 可以为logging模块指定模块级的配置,即所有logger的配置
    使用

    logging模块的Formatter,Handler,Logger,Filter对象

    原理图

    #logger:产生日志的对象
    
    #Filter:过滤日志的对象
    
    #Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
    
    #Formatter对象:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
    '''
    critical=50
    error =40
    warning =30
    info = 20
    debug =10
    '''
    
    
    import logging
    
    #1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
    logger=logging.getLogger(__file__)
    
    #2、Filter对象:不常用,略
    
    #3、Handler对象:接收logger传来的日志,然后控制输出
    h1=logging.FileHandler('t1.log') #打印到文件
    h2=logging.FileHandler('t2.log') #打印到文件
    h3=logging.StreamHandler() #打印到终端
    
    #4、Formatter对象:日志格式
    formmater1=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    formmater2=logging.Formatter('%(asctime)s :  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    formmater3=logging.Formatter('%(name)s %(message)s',)
    
    
    #5、为Handler对象绑定格式
    h1.setFormatter(formmater1)
    h2.setFormatter(formmater2)
    h3.setFormatter(formmater3)
    
    #6、将Handler添加给logger并设置日志级别
    logger.addHandler(h1)
    logger.addHandler(h2)
    logger.addHandler(h3)
    logger.setLevel(10)
    
    #7、测试
    logger.debug('debug')
    logger.info('info')
    logger.warning('warning')
    logger.error('error')
    logger.critical('critical')

    Logger与Handler的级别

    logger是第一级过滤,然后才能到handler,我们可以给logger和handler同时设置level,但是需要注意的是

    Logger is also the first to filter the message based on a level — if you set the logger to INFO, and all handlers to DEBUG, you still won't receive DEBUG messages on handlers — they'll be rejected by the logger itself. If you set logger to DEBUG, but all handlers to INFO, you won't receive any DEBUG messages either — because while the logger says "ok, process this", the handlers reject it (DEBUG < INFO).
    
    
    
    #验证
    import logging
    
    
    form=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    ch=logging.StreamHandler()
    
    ch.setFormatter(form)
    # ch.setLevel(10)
    ch.setLevel(20)
    
    l1=logging.getLogger('root')
    # l1.setLevel(20)
    l1.setLevel(10)
    l1.addHandler(ch)
    
    l1.debug('l1 debug')
    View Code

    Logger的继承(了解)

    import logging
    
    formatter=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    ch=logging.StreamHandler()
    ch.setFormatter(formatter)
    
    
    logger1=logging.getLogger('root')
    logger2=logging.getLogger('root.child1')
    logger3=logging.getLogger('root.child1.child2')
    
    
    logger1.addHandler(ch)
    logger2.addHandler(ch)
    logger3.addHandler(ch)
    logger1.setLevel(10)
    logger2.setLevel(10)
    logger3.setLevel(10)
    
    logger1.debug('log1 debug')
    logger2.debug('log2 debug')
    logger3.debug('log3 debug')
    '''
    2017-07-28 22:22:05 PM - root - DEBUG -test:  log1 debug
    2017-07-28 22:22:05 PM - root.child1 - DEBUG -test:  log2 debug
    2017-07-28 22:22:05 PM - root.child1 - DEBUG -test:  log2 debug
    2017-07-28 22:22:05 PM - root.child1.child2 - DEBUG -test:  log3 debug
    2017-07-28 22:22:05 PM - root.child1.child2 - DEBUG -test:  log3 debug
    2017-07-28 22:22:05 PM - root.child1.child2 - DEBUG -test:  log3 debug
    '''
    View Code

    应用

    """
    logging配置
    """
    
    import os
    import logging.config
    
    # 定义三种日志输出格式 开始
    
    standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' 
                      '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
    
    simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
    
    id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
    
    # 定义日志输出格式 结束
    
    logfile_dir = os.path.dirname(os.path.abspath(__file__))  # log文件的目录
    
    logfile_name = 'all2.log'  # log文件名
    
    # 如果不存在定义的日志目录就创建一个
    if not os.path.isdir(logfile_dir):
        os.mkdir(logfile_dir)
    
    # log文件的全路径
    logfile_path = os.path.join(logfile_dir, logfile_name)
    
    # log配置字典
    LOGGING_DIC = {
        'version': 1,
        'disable_existing_loggers': False,
        'formatters': {
            'standard': {
                'format': standard_format
            },
            'simple': {
                'format': simple_format
            },
        },
        'filters': {},
        'handlers': {
            #打印到终端的日志
            'console': {
                'level': 'DEBUG',
                'class': 'logging.StreamHandler',  # 打印到屏幕
                'formatter': 'simple'
            },
            #打印到文件的日志,收集info及以上的日志
            'default': {
                'level': 'DEBUG',
                'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
                'formatter': 'standard',
                'filename': logfile_path,  # 日志文件
                'maxBytes': 1024*1024*5,  # 日志大小 5M
                'backupCount': 5,
                'encoding': 'utf-8',  # 日志文件的编码,再也不用担心中文log乱码了
            },
        },
        'loggers': {
            #logging.getLogger(__name__)拿到的logger配置
            '': {
                'handlers': ['default', 'console'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
                'level': 'DEBUG',
                'propagate': True,  # 向上(更高level的logger)传递
            },
        },
    }
    
    
    def load_my_logging_cfg():
        logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
        logger = logging.getLogger(__name__)  # 生成一个log实例
        logger.info('It works!')  # 记录该文件的运行状态
    
    if __name__ == '__main__':
        load_my_logging_cfg()
    logging配置文件
    """
    MyLogging Test
    """
    
    import time
    import logging
    import my_logging  # 导入自定义的logging配置
    
    logger = logging.getLogger(__name__)  # 生成logger实例
    
    
    def demo():
        logger.debug("start range... time:{}".format(time.time()))
        logger.info("中文测试开始。。。")
        for i in range(10):
            logger.debug("i:{}".format(i))
            time.sleep(0.2)
        else:
            logger.debug("over range... time:{}".format(time.time()))
        logger.info("中文测试结束。。。")
    
    if __name__ == "__main__":
        my_logging.load_my_logging_cfg()  # 在你程序文件的入口加载自定义logging配置
        demo()
    使用
    注意注意注意:
    
    
    #1、有了上述方式我们的好处是:所有与logging模块有关的配置都写到字典中就可以了,更加清晰,方便管理
    
    
    #2、我们需要解决的问题是:
        1、从字典加载配置:logging.config.dictConfig(settings.LOGGING_DIC)
    
        2、拿到logger对象来产生日志
        logger对象都是配置到字典的loggers 键对应的子字典中的
        按照我们对logging模块的理解,要想获取某个东西都是通过名字,也就是key来获取的
        于是我们要获取不同的logger对象就是
        logger=logging.getLogger('loggers子字典的key名')
    
        
        但问题是:如果我们想要不同logger名的logger对象都共用一段配置,那么肯定不能在loggers子字典中定义n个key   
     'loggers': {    
            'l1': {
                'handlers': ['default', 'console'],  #
                'level': 'DEBUG',
                'propagate': True,  # 向上(更高level的logger)传递
            },
            'l2: {
                'handlers': ['default', 'console' ], 
                'level': 'DEBUG',
                'propagate': False,  # 向上(更高level的logger)传递
            },
            'l3': {
                'handlers': ['default', 'console'],  #
                'level': 'DEBUG',
                'propagate': True,  # 向上(更高level的logger)传递
            },
    
    }
    
        
    #我们的解决方式是,定义一个空的key
        'loggers': {
            '': {
                'handlers': ['default', 'console'], 
                'level': 'DEBUG',
                'propagate': True, 
            },
    
    }
    
    这样我们再取logger对象时
    logging.getLogger(__name__),不同的文件__name__不同,这保证了打印日志时标识信息不同,但是拿着该名字去loggers里找key名时却发现找不到,于是默认使用key=''的配置
    关于如何拿到logger对象的详细解释!!
    #logging_config.py
    LOGGING = {
        'version': 1,
        'disable_existing_loggers': False,
        'formatters': {
            'standard': {
                'format': '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]'
                          '[%(levelname)s][%(message)s]'
            },
            'simple': {
                'format': '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
            },
            'collect': {
                'format': '%(message)s'
            }
        },
        'filters': {
            'require_debug_true': {
                '()': 'django.utils.log.RequireDebugTrue',
            },
        },
        'handlers': {
            #打印到终端的日志
            'console': {
                'level': 'DEBUG',
                'filters': ['require_debug_true'],
                'class': 'logging.StreamHandler',
                'formatter': 'simple'
            },
            #打印到文件的日志,收集info及以上的日志
            'default': {
                'level': 'INFO',
                'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
                'filename': os.path.join(BASE_LOG_DIR, "xxx_info.log"),  # 日志文件
                'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
                'backupCount': 3,
                'formatter': 'standard',
                'encoding': 'utf-8',
            },
            #打印到文件的日志:收集错误及以上的日志
            'error': {
                'level': 'ERROR',
                'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
                'filename': os.path.join(BASE_LOG_DIR, "xxx_err.log"),  # 日志文件
                'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
                'backupCount': 5,
                'formatter': 'standard',
                'encoding': 'utf-8',
            },
            #打印到文件的日志
            'collect': {
                'level': 'INFO',
                'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
                'filename': os.path.join(BASE_LOG_DIR, "xxx_collect.log"),
                'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
                'backupCount': 5,
                'formatter': 'collect',
                'encoding': "utf-8"
            }
        },
        'loggers': {
            #logging.getLogger(__name__)拿到的logger配置
            '': {
                'handlers': ['default', 'console', 'error'],
                'level': 'DEBUG',
                'propagate': True,
            },
            #logging.getLogger('collect')拿到的logger配置
            'collect': {
                'handlers': ['console', 'collect'],
                'level': 'INFO',
            }
        },
    }
    
    
    # -----------
    # 用法:拿到俩个logger
    
    logger = logging.getLogger(__name__) #线上正常的日志
    collect_logger = logging.getLogger("collect") #领导说,需要为领导们单独定制领导们看的日志
    diango的配置

      返回目录

    re

    正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法

    作用:对字符串进行过滤

    在python中,正则内嵌在python中,并通过re模块实现。正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎执行。

    常用匹配模式

    import re
    #w与W
    print(re.findall('w','hello yb 123')) #['h', 'e', 'l', 'l', 'o', 'y', 'b', '1', '2', '3']
    print(re.findall('W','hello yb 123')) #[' ', ' ']
    
    #s与S
    print(re.findall('s','hello  yb  123')) #[' ', ' ', ' ', ' ']
    print(re.findall('S','hello  yb  123')) #['h', 'e', 'l', 'l', 'o', 'y', 'b', '1', '2', '3']
    
    #
     	都是空,都可以被s匹配
    print(re.findall('s','hello 
     yb 	 123')) #[' ', '
    ', ' ', ' ', '	', ' ']
    
    #
    print(re.findall(r'
    ','hello yb 
    123')) #['
    ']
    print(re.findall(r'	','hello yb	123')) #['	']
    
    #d与D
    print(re.findall('d','hello yb 123')) #['1', '2', '3']
    print(re.findall('D','hello yb 123')) #['h', 'e', 'l', 'l', 'o', ' ', 'y', 'b', ' ']
    
    #A与
    print(re.findall('Ahe','hello yb 123')) #['he'],A==>^
    print(re.findall('123','hello yb 123')) #['he'],==>$
    
    #^与$
    print(re.findall('^h','hello yb 123')) #['h']
    print(re.findall('3$','hello yb 123')) #['3']
    
    # 重复匹配:| . | * | ? | .* | .*? | + | {n,m} |
    #.
    print(re.findall('a.b','a1b')) #['a1b']
    print(re.findall('a.b','a1b a*b a b aaab')) #['a1b', 'a*b', 'a b', 'aab']
    print(re.findall('a.b','a
    b')) #[]
    print(re.findall('a.b','a
    b',re.S)) #['a
    b']
    print(re.findall('a.b','a
    b',re.DOTALL)) #['a
    b']同上一条意思一样
    
    #*
    print(re.findall('ab*','bbbbbbb')) #[]
    print(re.findall('ab*','a')) #['a']
    print(re.findall('ab*','abbbb')) #['abbbb']
    
    #?
    print(re.findall('ab?','a')) #['a']
    print(re.findall('ab?','abbb')) #['ab']
    #匹配所有包含小数在内的数字
    print(re.findall('d+.?d*',"asdfasdf123as1.13dfa12adsf1asdf3")) #['123', '1.13', '12', '1', '3']
    
    #.*默认为贪婪匹配
    print(re.findall('a.*b','a1b22222222b')) #['a1b22222222b']
    
    #.*?为非贪婪匹配:推荐使用
    print(re.findall('a.*?b','a1b22222222b')) #['a1b']
    
    #+
    print(re.findall('ab+','a')) #[]
    print(re.findall('ab+','abbb')) #['abbb']
    
    #{n,m}
    print(re.findall('ab{2}','abbb')) #['abb']
    print(re.findall('ab{2,4}','abbb')) #['abb']
    print(re.findall('ab{1,}','abbb')) #'ab{1,}' ===> 'ab+'
    print(re.findall('ab{0,}','abbb')) #'ab{0,}' ===> 'ab*'
    
    #[]
    print(re.findall('a[1*-]b','a1b a*b a-b')) #[]内的都为普通字符了,且如果-没有被转意的话,应该放到[]的开头或结尾
    print(re.findall('a[^1*-]b','a1b a*b a-b a=b')) #[]内的^代表的意思是取反,所以结果为['a=b']
    print(re.findall('a[0-9]b','a1b a*b a-b a=b')) #[]内的^代表的意思是取反,所以结果为['a=b']
    print(re.findall('a[a-z]b','a1b a*b a-b a=b aeb')) #[]内的^代表的意思是取反,所以结果为['a=b']
    print(re.findall('a[a-zA-Z]b','a1b a*b a-b a=b aeb aEb')) #[]内的^代表的意思是取反,所以结果为['a=b']
    
    ## print(re.findall('a\c','ac')) #对于正则来说a\c确实可以匹配到ac,但是在python解释器读取a\c时,会发生转义,然后交给re去执行,所以抛出异常
    print(re.findall(r'a\c','ac')) #r代表告诉解释器使用rawstring,即原生字符串,把我们正则内的所有符号都当普通字符处理,不要转义
    print(re.findall('a\\c','ac')) #同上面的意思一样,和上面的结果一样都是['a\c']
    
    #():分组
    print(re.findall('ab+','ababab123')) #['ab', 'ab', 'ab']
    print(re.findall('(ab)+123','ababab123')) #['ab'],匹配到末尾的ab123中的ab
    print(re.findall('(?:ab)+123','ababab123')) #findall的结果不是匹配的全部内容,而是组内的内容,?:可以让结果为匹配的全部内容
    print(re.findall('href="(.*?)"','<a href="http://www.baidu.com">点击</a>'))#['http://www.baidu.com']
    print(re.findall('href="(?:.*?)"','<a href="http://www.baidu.com">点击</a>'))#['href="http://www.baidu.com"']
    
    #|
    print(re.findall('compan(?:y|ies)','Too many companies have gone bankrupt, and the next one is my company'))
    # ===========================re模块提供的方法介绍===========================
    import re
    #1
    print(re.findall('e','ex make love') )   #['e', 'e', 'e'],返回所有满足匹配条件的结果,放在列表里
    #2
    print(re.search('e','ex make love').group()) #e,只到找到第一个匹配然后返回一个包含匹配信息的对象,该对象可以通过调用group()方法得到匹配的字符串,如果字符串没有匹配,则返回None。
    
    #3
    print(re.match('e','ex make love'))    #<re.Match object; span=(0, 1), match='e'>    None,同search,不过在字符串开始处进行匹配,完全可以用search+^代替match
    
    #4
    print(re.split('[ab]','abcd'))     #['', '', 'cd'],先按'a'分割得到''和'bcd',再对''和'bcd'分别按'b'分割
    
    #5
    print('===>',re.sub('a','A','ex make love')) #===> ex mAke love,不指定n,默认替换所有
    print('===>',re.sub('a','A','ex make love',1)) #===> ex make love
    print('===>',re.sub('a','A','ex make love',2)) #===> ex mAke love
    print('===>',re.sub('^(w+)(.*?s)(w+)(.*?s)(w+)(.*?)$',r'52341','alex make love')) #===> love make ex
    
    print('===>',re.subn('a','A','ex make love')) #===> ('ex mAke love', 2),结果带有总共替换的个数
    
    
    #6
    obj=re.compile('d{2}')
    
    print(obj.search('abc123eeee').group()) #12
    print(obj.findall('abc123eeee')) #['12'],重用了obj
    #补充一
    import re
    print(re.findall("<(?P<tag_name>w+)>w+</(?P=tag_name)>","<h1>hello</h1>")) #['h1']
    print(re.search("<(?P<tag_name>w+)>w+</(?P=tag_name)>","<h1>hello</h1>").group()) #<h1>hello</h1>
    print(re.search("<(?P<tag_name>w+)>w+</(?P=tag_name)>","<h1>hello</h1>").groupdict()) #<h1>hello</h1>
    
    print(re.search(r"<(w+)>w+</(w+)>","<h1>hello</h1>").group())
    print(re.search(r"<(w+)>w+</1>","<h1>hello</h1>").group())
    #补充二
    import re
    
    #使用|,先匹配的先生效,|左边是匹配小数,而findall最终结果是查看分组,所有即使匹配成功小数也不会存入结果
    #而不是小数时,就去匹配(-?d+),匹配到的自然就是,非小数的数,在此处即整数
    #
    print(re.findall(r"-?d+.d*|(-?d+)","1-2*(60+(-40.35/5)-(-4*3))")) #找出所有整数['1', '-2', '60', '', '5', '-4', '3']
    
    #找到所有数字:
    print(re.findall('D?(-?d+.?d*)',"1-2*(60+(-40.35/5)-(-4*3))")) # ['1','2','60','-40.35','5','-4','3']
    
    #计算器作业参考:http://www.cnblogs.com/wupeiqi/articles/4949995.html
    expression='1-2*((60+2*(-3-40.0/5)*(9-2*5/3+7/3*99/4*2998+10*568/14))-(-4*3)/(16-3*2))'
    
    content=re.search('(([-+*/]*d+.?d*)+)',expression).group() #(-3-40.0/5)
    #为何同样的表达式search与findall却有不同结果:
    print(re.search('(([+-*/]*d+.?d*)+)',"1-12*(60+(-40.35/5)-(-4*3))").group()) #(-40.35/5)
    print(re.findall('(([+-*/]*d+.?d*)+)',"1-12*(60+(-40.35/5)-(-4*3))")) #['/5', '*3']
    
    #看这个例子:(d)+相当于(d)(d)(d)(d)...,是一系列分组
    print(re.search('(d)+','123').group()) #group的作用是将所有组拼接到一起显示出来
    print(re.findall('(d)+','123')) #findall结果是组内的结果,且是最后一个组的结果
    # _*_coding:utf-8_*_
    __author__ = 'Yangbin'
    # 在线调试工具:tool.oschina.net/regex/#
    import re
    
    s = '''
    http://www.baidu.com
    yb@oldboyedu.com
    你好
    010-3141
    '''
    
    # 最常规匹配
    content = 'Hello 123 456 World_This is a Regex Demo'
    res = re.match('Hellosdddsd{3}sw{10}.*Demo', content)
    print(res)
    print(res.group())
    print(res.span())
    """
    <re.Match object; span=(0, 40), match='Hello 123 456 World_This is a Regex Demo'>
    Hello 123 456 World_This is a Regex Demo
    (0, 40)
    """
    
    
    # 泛匹配
    content='Hello 123 456 World_This is a Regex Demo'
    res=re.match('^Hello.*Demo',content)
    print(res.group())  #Hello 123 456 World_This is a Regex Demo
    
    
    # 匹配目标,获得指定数据
    
    content='Hello 123 456 World_This is a Regex Demo'
    res=re.match('^Hellos(d+)s(d+)s.*Demo',content)
    print(res.group()) #取所有匹配的内容
    print(res.group(1)) #取匹配的第一个括号内的内容
    print(res.group(2)) #去陪陪的第二个括号内的内容
    """
    Hello 123 456 World_This is a Regex Demo
    123
    456
    """
    
    
    # 贪婪匹配:.*代表匹配尽可能多的字符
    import re
    content='Hello 123 456 World_This is a Regex Demo'
    
    res=re.match('^He.*(d+).*Demo$',content)
    print(res.group(1)) #只打印6,因为.*会尽可能多的匹配,然后后面跟至少一个数字
    
    
    # 非贪婪匹配:?匹配尽可能少的字符
    import re
    content='Hello 123 456 World_This is a Regex Demo'
    
    res=re.match('^He.*?(d+).*Demo$',content)
    print(res.group(1)) #123
    
    
    # 匹配模式:.不能匹配换行符
    content = '''Hello 123456 World_This
    is a Regex Demo
    '''
    res=re.match('He.*?(d+).*?Demo$',content)
    print(res) #输出None
    
    res=re.match('He.*?(d+).*?Demo$',content,re.S) #re.S让.可以匹配换行符
    print(res)  #<re.Match object; span=(0, 39), match='Hello 123456 World_This
    is a Regex Demo'>
    print(res.group(1)) #123456
    
    
    # 转义:
    
    content='price is $5.00'
    res=re.match('price is $5.00',content)
    print(res)  #None
    
    res=re.match('price is $5.00',content)
    print(res)  #<re.Match object; span=(0, 14), match='price is $5.00'>
    
    
    # 总结:尽量精简,详细的如下
    # 尽量使用泛匹配模式.*
    # 尽量使用非贪婪模式:.*?
    # 使用括号得到匹配目标:用group(n)去取得结果
    # 有换行符就用re.S:修改模式
    
    
    # re.search:会扫描整个字符串,不会从头开始,找到第一个匹配的结果就会返回
    
    import re
    content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
    
    res=re.match('Hello.*?(d+).*?Demo',content)
    print(res) #输出结果为None
    
    
    import re
    content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
    
    res=re.search('Hello.*?(d+).*?Demo',content) #
    print(res.group(1)) #输出结果为123
    
    
    # re.search:只要一个结果,匹配演练,
    import re
    
    content = '''
    <tbody>
    <tr id="4766303201494371851675" class="even "><td><div class="hd"><span class="num">1</span><div class="rk "><span class="u-icn u-icn-75"></span></div></div></td><td class="rank"><div class="f-cb"><div class="tt"><a href="/song?id=476630320"><img class="rpic" src="http://p1.music.126.net/Wl7T1LBRhZFg0O26nnR2iQ==/19217264230385030.jpg?param=50y50&amp;quality=100"></a><span data-res-id="476630320">
    '''
    res=re.search('<ashref=.*?<bstitle="(.*?)".*?b>',content)
    print(res)
    #结果为None????
    
    
    #re.findall:找到符合条件的所有结果
    res=re.findall('<ashref=.*?<bstitle="(.*?)".*?b>',content)
    for i in res:
        print(i)
    #结果为None????
    
    
    #re.sub:字符串替换
    import re
    content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
    
    content=re.sub('d+','',content)
    print(content)
    #Extra strings Hello   World_This is a Regex Demo Extra strings
    
    
    #用1取得第一个括号的内容
    #用法:将123与456换位置
    import re
    content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
    
    # content=re.sub('(Extra.*?)(d+)(s)(d+)(.*?strings)',r'14325',content)
    content=re.sub('(d+)(s)(d+)',r'321',content)
    print(content)
    #Extra strings Hello 456 123 World_This is a Regex Demo Extra strings
    
    
    
    import re
    content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
    
    res=re.search('Extra.*?(d+).*strings',content)
    print(res.group(1)) #123
    
    
    import requests,re
    respone=requests.get('https://book.douban.com/').text
    
    print(respone)
    print('======'*1000)
    print('======'*1000)
    print('======'*1000)
    print('======'*1000)
    res=re.findall('<li.*?cover.*?href="(.*?)".*?title="(.*?)">.*?more-meta.*?author">(.*?)</span.*?year">(.*?)</span.*?publisher">(.*?)</span.*?</li>',respone,re.S)
    # res=re.findall('<li.*?cover.*?href="(.*?)".*?more-meta.*?author">(.*?)</span.*?year">(.*?)</span.*?publisher">(.*?)</span>.*?</li>',respone,re.S)
    
    
    for i in res:
        print('%s%s%s%s'%(i[0].strip(),i[1].strip(),i[2].strip(),i[3].strip()))
    View Code

     返回目录

  • 相关阅读:
    Angular
    Angular
    Angular
    Angular
    Angular
    Angular
    Angular
    springsecurity 源码解读 之 RememberMeAuthenticationFilter
    springsecurity 源码解读之 AnonymousAuthenticationFilter
    springsecurity 源码解读之 SecurityContext
  • 原文地址:https://www.cnblogs.com/sanqiansi/p/10187251.html
Copyright © 2011-2022 走看看