关于堆优化
传统(Dijkstra),在选取中转站时,是遍历取当前最小距离节点,但是我们其实可以利用小根堆(STL的priority_queue
)优化这个过程,从而大大降低复杂((O(V^2+E) -> O((V+E)lgV)))
另外,需要注意,因为(Dijkstra)本质是贪心,每一次选择中转站必须保证最优,而负边权会使当前中转站不为最优,所以不能处理含有负边权的图
代码
#include <cstdio>
#include <queue>
#include <vector>
#define MAXN 200010
#define INF 0x3fffffff
using namespace std;
struct edge{
int v,w;
edge(int v, int w):v(v),w(w){}
};
vector <edge> mp[MAXN];
int dis[MAXN];
bool vis[MAXN];
int n,m,s;
struct node{
int v,dis;
node(int v, int dis):v(v),dis(dis){}
const bool operator < (const node &a) const{
return a.dis < dis;
}
};
priority_queue <node> q;
int read(){
char ch;int s=0;
ch = getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s;
}
void dj(){
for(register int i=1;i<=n;i++)
dis[i]=INF;
dis[s]=0;
q.push(node(s, 0));
while(!q.empty()){
node cur = q.top();
q.pop();
if(vis[cur.v]) continue;
vis[cur.v] = 1;
for(register int i=0;i<mp[cur.v].size();i++){
edge to = mp[cur.v][i];
if(vis[to.v]) continue;
if(dis[to.v]>to.w+dis[cur.v]){
dis[to.v]=to.w+dis[cur.v], q.push(node(to.v, dis[to.v]));
}
}
}
for(register int i=1;i<=n;i++)
printf("%d ", dis[i]);
}
int main()
{
n=read(),m=read(),s=read();
for(register int i=1;i<=m;i++){
int u,v,w;
u=read(),v=read(),w=read();
mp[u].push_back(edge(v, w));
}
dj();
return 0;
}