1、必须有一个明确的结束条件;
2、每次进入一层递归时,问题规模相比上次递归都应有所减少;
---------------------------------------------------------------------------------------
匿名函数总结:
lambda x,y:x+y #return x+y
max(iter,key=lambda)
min(iter,key=lambda)
sorted(iter,key=lambda)
map(lambda,iter)
reduce(lambda,iter)
filter(lambda,iter)
----------------------------------------------------------------------------------
import time
print(time)--------<module 'time' (built-in)>
类似:m=__import__('time')
print(m)
m.sleep(3)
filter函数:过滤是TRUE值的内容:
示例:
dic=[{'name':'geon','age':20},
{'name':'geon2','age':9000},
{'name':'geon3','age':1000}
]
过滤大于100的字典
a=filter(lambda d:d['age']>100,dic)
for i in a:
print(i)
reduce:示例:
python中的reduce内建函数是一个二元操作函数,他用来将一个数据集合(链表,元组等)
中的所有数据进行下列操作:用传给reduce中的函数 func()(必须是一个二元操作函数)
先对集合中的第1,2个数据进行操作,得到的结果再与第三个数据用func()函数运算,
最后得到一个结果。
from functools import reduce
l=list(range(100))
print(l)
reduce(lambda x,y:x+y,l)
---------------------------------------------------------------------------------------
常用函数:sum lambda zip() map
map:示例:
name_l=['a','b','c']
map(lambda x:name+'sb',name_l) <------------map + lambda
<----------map(lambda x:'x--',可迭代对象)
l=[1,2,3,4,7]
原实现: [i**2 for i in l ]
print(x)
map 实现: m=map(lambda i:i**2,l)
FOR i in m:
print(i)
print(list(m))
lambda 函数:
匿名函数
lambda k: salaries[k] <-----------------------
冒号:后面相当于return 内容。
salaries={'a':10,'b':20,'c':30}
f=lambda k:salaries[k]
print(f)
print(f('c')) --------------给一个 key 返回 key 对应的 value
改写 字典取最大值:
print(max(salaries,lambda k:salaries[k]))
示例1: 返回字典内最大值的 KEY ,比较 字典内的VALUE: <------------------
dic={'a':10,'b':20,'c':30}
def get_value(k):
return dic[k]
print(max(dic,key=get_value))
lamba K:return(dic[key])
示例2: zip
print(dic.keys(),dic.values())
z=zip(dic.keys(),dic.values()) <----------------------
print([i for i in z])
>>>>>
dict_keys(['c', 'a', 'b']) dict_values([30, 10, 20])
[('c', 30), ('a', 10), ('b', 20)]
----------------------------------------------------------------------------------------------
声明式编程:
示例2: 列表嵌套字典
res=(line.split() for line in f)
dec=[{'name':j[0],'prince':j[1],'count':j[2]} for j in res]
以上可改成:
res=[]
with open('b.txt') as f:
for line in f:
l=line.split()
d={}
d['name']=l[0]
d['prince']=l[1]
d['count']=l[2]
res.append(d)
print(res)
示例1:
f=open('b.txt')
ms=(float(line.split()[-1])*float(line.split()[-2]) for line in f)
sum(ms)
以上可以用生命式替代
money=[]
with open('b.txt') as f:
for line in f:
goods=line.split()
res=int(goods[-1])*int(goods[-2])
money.append(res)
# prin
print(sum(money))
sum() 可以plus 可迭代对象; ------------------------------
如:sum([1,2,3,4])
numJ_g=(i for i in range(3))
print(sum(numj_g))
------------------------------------------------------------------------------------
f=open('sp')
# l1=[i.strip() for i in f]
l1=(i.strip() for i in f) <------------------ 可迭代对象;
print(next(l1))
a=list(l1) <------------- list() 括号可以包含可迭代对象 ,生成列表;
g=l=('egg%s'%i for i in range(100)) 元组 ---生成器;
print(g)
print(next(g))
>>> i=('egg %s'%i for i in range(100) if i<50)
>>> print(i)
<generator object <genexpr> at 0x7ff0e56b7f10>
>>> print(next(i))
egg 0
>>>
-----------------------------------------------------------------------
列表表达式;
go=os.walk('/home/zjf')
l1=['%s/%s'%(i[0],j) for i in g for j in i[-1]]
print(l1)
i=['egg %s'%i for i in range(100) if i > 50]
l=[1,2,3,4]
s='hello'
l1=[(num,s1) for num in l for s1 in s]
print(l1)
------------------------------------------------------------------------------------
面向过程函数示例:
import os
def init(func):
def wrapper(*args,**kwargs):
res = func(*args,**kwargs) #!!!!!!!!!!!!!!!!!! 忘记加参数
next(res)
return res
return wrapper #!!!!!!!!!!!!!!!!!!!!!!忘记返回wrapper
@init
def search(target):
while True:
dir_name = yield
g = os.walk(dir_name)
for i in g:
for j in i[-1]:
file_path = '%s/%s'%(i[0],j)
target.send(file_path)
@init
def opener(target):
'打开文件获取文件句柄'
while True:
file_path=yield
with open(file_path) as f:
target.send((file_path,f)) #!!!!!!!!!!!!!! 传2个参数
@init
def cat(target):
'读取文件内容'
while True:
file_path,f=yield #!!!!!!!!!!!!!!!!!!!!!接收2个参数
for line in f:
target.send((file_path,line))
@init
def grep(pattern,target): #!!!!!!!!!!!!!!! 先参数,后函数target
'过滤行内容有无python'
while True:
file_path,line=yield
if pattern in line:
target.send(file_path)
@init
def printer():
'打印文件路径'
while True:
file_path=yield
print(file_path)
g=search(opener(cat(grep('python',printer()))))
g.send('/home/zjf/geon')
协程函数:
----------------------------------------------------------------------------------
示例:作业: 连续输入网址打印结果;
from urllib.request import urlopen
def get():
while True:
url=yield
res=urlopen(url).read()
print(res)
e=get()
next(e)
print(e.send('http://www.baidu.com'))
print(e.send('http://www.sina.com'))
----------------------------------------------------------------------------------
协程函数:(使用yield 表达式的生成器)
yield 表达式:
开始的生成器不能使用send,
必须先netx()之后才能使用send()
#e.send与next(e) 的区别:
1、如果函数内yield是表达式形式,那么必须先next(e)
2、二者共同之处都是可以让函数在上次暂停的位置继续运行;
不一样:send在触发下一次代码的执行时,会顺便给yield赋值;
示例1、:刚蛋吃包子
def eater(name):
print('%s start to eat'%name)
while True:
food=yield #类比: 去饭馆点菜以后等着。 print('%s start to eat'%name)
while True:
food=yield #类比: 去饭馆点菜以后等着。
print('%s get %s,to start eat'%(name,food))
print('done')
e=eater('刚蛋')
print(e)
print(next(e))
e.send('包子')
print('%s get %s,to start eat'%(name,food))
print('done')
e=eater('刚蛋')
print(e)
print(next(e))
e.send('包子') #send(self,value) yield = '包子' send 相当于next()
示例2:
def eater(name):
print('%s start to eat'%name)
foodlist=[]
while True:
food=yield foodlist
print('%s get %s,to start eat'%(name,food))
foodlist.append(food)
print('done')
e=eater('刚蛋')
# print(e)
print(next(e))
print(e.send('包子'))
示例3: 跳过 next(e)
def fst(fun):
def wrapper(*args,**kwargs):
# fun(**args)
res=fun(*args,**kwargs)
next(res)
return res
return wrapper
@fst # ester=fst(eater)
def eater(name):
print('%s start to eat'%name)
foodlist=['动骨']
while True:
food=yield foodlist
# print('get %s,to start eat'%food)
foodlist.append(food)
print('done')
e=eater('刚蛋') #wrapper('刚带')
# print(next(e))
print(e.send('包子'))
print(e.send('包子2'))
print(e.send('包子3'))
print(e.send('包子4'))
print(e.send('包子5'))
print(e.send('包子6'))
----------------------------------------------------------------------------------
示例2、:tail管道 程序用python编写; tail |grep 'error'
import time
def tail(file_path):
with open(file_path,'r') as f:
f.seek(0,2)
while True:
line=f.readline()
if not line:
time.sleep(0.3)
continue
else:
yield line
def grep2(pattern,lines):
for line in lines:
if pattern in line:
print(line)
#调用
g=tail('/tmp/a.txt') #带参数的函数作为 另一个函数的输入!!!
grep2('error',g)
示例1、:tail程序用python编写;
#/usr/bin
import time
def tail(file_path):
with open(file_path,'r') as f:
f.seek(0,2)
while True:
line=f.readline()
if not line:
time.sleep(0.3)
continue
else:
print(line,end='')
tail('/tmp/a.txt')
------------------------------------------------------------------------------------------
生成器
与return区别:
生成器就是一个函数,这个函数内包含yield这个关键字; <-------------------------!!!!!
return只能返回一次,函数彻底结束;多个yield能返回多次值;
生成器的本质就是迭代器; <----------------------------------!!!!!!!!!!!
可迭代的数据类型: 可以用for循环的 就是可迭代的; <-----------------------!!!!!!!!!!
yield干了什么:
1、把函数变成生成器---> 迭代器 g=test() g.__iter() g.__next()
#用RETURN 返回值只能返回一次,而YIELD返回多次
#函数在暂停以及下一次继续喜下一次运行的状态是有YIELD保存;
yield功能总结;
1、相当于把__iter__和__next__方法封装到函数内部
2、与RETURN比,RETUN只能返回一次,而YIELD返回多次;
3、函数暂停已继续运行的状态通过yield保存
for i in g:
print(i)
示例:
def a(n):
print('cut down:')
while n > 0:
yield n
n -=1
g=a(5)
#for i in g:
for i in g:
print(i)
示例:
def a(n):
print('cut down:')
while n > 0:
yield n
n -=1
g=a(5)
#for i in g:
# print(i)
或者:
while True:
try:
print(next(g))
except StopIteration:
break
--------------------------------------------------------------------------------
def test():
print('first')
yield 1 #return 1 碰到yield 停止,并返回 1
yield 2
test()
g=gest()
print(isinstance(g,Iterator)) 是否是可迭代对象;
print(next(g)) 触发对象是函数;
示例:
def scq():
print('a')
yield 1,2,3,4
print('b')
yield 2
print('c')
yield 3
res_sc=scq()
res=next(res_sc)
print(res)
res=next(res_sc)
print(res)
res=next(res_sc)
----------------------------------------------------------------------------------
isinstance('ssssss',str)
type('ssss') is str >>>>>>>>> True
可迭代的数据类型: 可以用for循环的 就是可迭代的;
数据类型是迭代器: 只有文件本身是迭代器;
迭代器 (优缺点)
1、 提供了一种不依赖索引取值的方式;这样就可以遍历没有索引的可迭代对象:
如: 字典,集合,文件
2、 迭代器与列表比较,迭代器更省内存;(惰性计算;)
3、 缺点:无法获取迭代器长度;使用不如列表索引取值灵活;
迭代器一次性取值;
d={'a':1,'b':2,'c':3}
i=iter(d)
while True:
try:
print(next(i))
except StopIteration: # 类似if StopIteration:
break
#可迭代的: 只要对象本身有__iter__()方法,那它就是可迭代的;
d={'a':1,'b':2,'c':3}
i=d.__iter__()
print(i.__next__())
______________________________________________________________________________
把装饰器内的参数包到函数里面; @timmer(auth_type=file) 有参装饰器!
示例:
装饰器: 最重要的是定义wrapper不能少了return值;!!!!!!!!!!!!!!!!!!
def auth2(auth_type):
def auth(fun):
print(auth_type)
def wrapper(*args,**kwargs):
if auth_type=='file':
name=input('username:')
password=input('password:')
if name=='zhejiangf4' and password=='sb':
print('auth successful')
res=fun(*args,**kwargs)
return res
else:
print('auth error')
return wrapper
return auth
@auth2(auth_type='file')
def index():
print('welcome to index page !')
index()
补充:
@ccchttps://www.baidu.com/
@bbb
@aaa
def fun():
print('aaa')
fun=ccc(bbb(aaa(fun)))
示例3:
@ccc('c')
@bbb('b')
@aaa('a')
def func():
pass
func=ccc('c')(bbb('b')(aaa('a')(func)))
______________________________________________________________________________
#装饰器
import time
def timmer(fun):
def wrapper():
start_time=time.time()
func() -------------->index()
stop_time=time.time()
s_time=stop_time-start_time
print('pro runs time is %s'%s_time)
return wrapper
@装饰器语法 timmer名称
@timmer #--------> index=timmer(inex)=wrapper !!!!!!!!!!!!注意:是index名字!
def index():
time.sleep(3)
print('welcme to old boy')
index() index=wrapper -------------------wrapper()
执行过程:----------1、先找到index ---index地址,2、执行 ()
______________________________________________________________________________
闭包:首先必须是内部定义的函数,包含对外部作用域,而非全局作用域名字的引用;
x=1
def f1():
x=2
def f2():
print(x)
return f2 # f2!
f=f1() # --->内部f2
f()
print(f.__closure__) # 闭包有__closure__
print(f.__clousure__[0].cell_contents)
例子2:
x=1
def f1(x):
# x=2
def f2():
print(x)
return f2
f=f1(1000000000)
f()
print(f.__closure__)
print(f.__closure__[0].cell_contents)
zjf@zjf-MATE:~/test$ python3 a.py
1000000000
(<cell at 0x7f9158116468: int object at 0x7f915811e710>,)
1000000000
例子3:
from urllib.request import urlopen
def get(url):
def index():
return urlopen(url).read()
return inex
f=get('http://www.baidu.com')
print(f.__closure__[0].cell_contents)
# 下载www.baidu页面
______________________________________________________________________________
功能(def),主逻辑(if ....);---------
函数可以看成变量:函数可以被赋值;可以被当作参数传递;
def foo():
print('foo')
def bar(func):
print(func) #打印 foo 内存地址;
fun() #执行 foo 函数;
bar(foo)
_______________________________________________________________________________
x=1
def foo():
x=1
print(x)
foo()
作用域: 函数内部---->函数外部-----> 内置名称
_______________________________________________________________________________
参数位置顺序: (x,*args,**kwargs)
**kwargs 字典方式; 除位置参数意外剩下的。
eg:
def foo(x,*args,**kwargs):
print(x)
print(args)
print(kwargs)
foo(1,y=1,z=2) y=1,z=2 传给kwargs
>>> foo(3,'a'=2)
File "<stdin>", line 1
SyntaxError: keyword can't be an expression
def foo(x,**kwargs):
print(x)
print(kwargs)
foo(1,y=2,a=3,b=4) # **kwagrs实参索引不能加 '' !!!!!!!!!!!!!!
>>>>>>1
>>>>>>{'y':2,'a':3,'b':4}
__________________________________________________________________________________
*args #args 位置参数;
示例1:
def foo(x,*args):
print(x)
print(args)
foo(1,2,3,4,5,6,'a','b') *args 实参元组格式必须加 ''
示例2:
def bar(x,y,z): #需要一一对应;(与*(值))
print(x)
print(y)
print(z)
bar(*(1,2,3)) # *(1,2,3) 类似1,2,3 = bar(1,2,3)
多出的以元组的形式给args
sum([1,2,3,4])
tips:
1、位置参数特点: 必须传值的参数!
2、默认参数必须放在位置参数后面!
3、是参是可变类型 结果会受函数的影响 (编程可控性变差): 不可变类型不会;
def bar(x):
x.append(4)
x=[1,2,3,]
bar(x) # x传递的是内存地址;
print(x)
>>>>>[1,2,3,4]
__________________________________________________________________________________
head,*_=[1,2,3,4,5]
>>>head
>>>1 对于元组,序列类型都可以这么玩;
a,b,c,d,e=[1,2,3,4,5]
a,_,_,_,e=[1,2,3,4,5]
>>>a
>>>1
>>>e
>>>5
x='hello'
x,y,z,x1,x2='hello'
x='h'
y='e'
z='l'
x1='l'
x2='9'
例子1:
def bar(x,y):
return 1,2,3 # 多值return
a,b,c=bar(1,2)
print(a)
print(b)
print(c)
例子2:
def foo(x,y):
print(x)
print(y)
a=100
b=200
foo(a,b) #是参必须是明确的值
例子3:
x=[] #每次改全局的值;
def register(name,name_list=x):
name_list.append(name)
register('ASB')
register('ysb')
__________________________________________________________________________________
def bar(x,y):return 1,2,3,4,[1,2],{'a',1}
多值返回,格式为元组;
>>>>(1, 2, 3, 4, [1, 2], {1, 'a'})
_______________________________________________
def bar(x,y):
res=x+y
return res
res1=bar(1,2)
res=bar(1,2)*10
bar(bar(1,2),3)
def 函数名(arg1,arg2,arg3):
'描述信息'
函数体
return 1 (可以是任意数据类型;)
无参函数一般不需要返回值;
____________________________________________________________________________________
硬盘保存数据--------->(完全读到内存;) 其实就是覆盖原来的数据;
with open('a.txt') as f, open('b.txt') as f2:
pass
f.seek(0) 光标到开头,truncate(3) 从开头截断到第3个位置;其他丢弃;
truncate(3)
with open('a.txt','w') as f:
f.writelines(['111111111
','22222222222
')
f.seek(0)
f.truncate(3)
with open('a.txt','w') as f:
f.writelines(['111111111
','22222222222
')
eval() 字符串转字典,列表;