zoukankan      html  css  js  c++  java
  • Sigma Function (LightOJ

    Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】

    标签: 入门讲座题解 数论


    题目描述

    Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is
    题目描述(1)
    Then we can write,
    题目描述(2)
    For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.
    
    Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).
    

    Output

    For each case, print the case number and the result.
    

    Sample Input

    4
    
    3
    
    10
    
    100
    
    1000
    

    Sample Output

    Case 1: 1
    
    Case 2: 5
    
    Case 3: 83
    
    Case 4: 947
    

    题意

    约数和函数$$sigma{(n)} = sum_{d | n} d;.$$
    给定(n),询问([1, n])区间内有几个(i),使得(sigma{(i)})为偶数?


    解析

    根据算数基本定理,正整数(n),有唯一质因数分解形式,$$n = p_1^{alpha_1}cdot p_2^{alpha_2} cdot p_3^{alpha_3} cdot ,,cdots ,, cdot p_n^{alpha_n}quad(p_i ;is ;a ;prime).$$
    那么,根据乘法计数原理,显然有(sigma{(n)} = (1 + p_1^1 + p_1^2 + cdots p_1^{alpha_1}) cdot (1 + p_2^1 + p_2^2 + cdots + p_2^{alpha_2}) cdot (1 + p_3^1 + p_3^2 + cdots + p_3^{alpha_3}) cdot \,\, cdots \,\, cdot (1 + p_n^1 + p_n^2 + cdots + p_n^{alpha_n})).

    正难则反,我们不方便研究(sigma{(n)})为偶数的情况,我们可以研究(sigma{(n)})为奇数的个数,然后用总数减掉奇数个数,就得到偶数个数。

    1. 首先,我们要清楚
    • 偶数 + 偶数 = 偶数
      奇数 + 偶数 = 奇数
      奇数 + 奇数 = 偶数

    • 偶数 * 偶数 = 偶数
      奇数 * 偶数 = 偶数
      奇数 * 奇数 = 奇数。

    1. 我们知道,只有让(sigma{(n)})的全部因数都为奇数才可以使(sigma{(n)})为奇数。
    • (2 \,| \,n),则((1 + p_1^1 + p_1^2 + cdots p_1^{alpha_1}))这项一定是奇数。因为(2)的任何次幂都是偶数,且偶数 + 奇数 = 奇数。

    • 对于除(2)以外的其他质数,它的任何次幂都一定是奇数。要想使因数项为奇数,则只能构造($1 + $ 偶数) 的这种形式.当有偶数个奇数相加时,它们的和是偶数。所以,(alpha_1,alpha_2, alpha_3, dots,alpha_n)(不包括(2)的指数)都应该是偶数。

    • (n) 可以是一个完全平方数。当(n)是一个完全平方数时,(alpha_1,alpha_2, alpha_3, dots,alpha_n)都是偶数。因为(n)可以找到两个完全相同的因子。
      或者,(n)可以是$2 imes $ 完全平方数。因为把(2)当作底数的因数项永远是奇数,所以乘上(2)依然能保持所有乘数项都是奇数。(为什么没有$2^2, 2^3, 2^4, dots imes $ 完全平方数?当(2)的指数为偶数时,用完全平方数就可以找到这个数。如果是奇数时,指数 = 1 + 偶数,又还原为$2 imes $ 完全平方数。)

    • 综上,(ans = n - sqrt{n} - sqrt{n / 2})


    通过代码

    /*
    Problem
        LightOJ - 1336
    Status
    	Accepted
    Time
    	151ms
    Memory
    	2084kB
    Length
    	411
    Lang
    	C++
    Submitted
    	2019-11-26 23:30:58
    RemoteRunId
    	1641328
    */
    
    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    
    int main()
    {
        int times, kase = 0;
    
        scanf("%d", &times);
    
        while(times --){
            ll n, cnt = 0;                //cnt也有可能会超过1e9,所以要声明为long long类型.
            scanf("%lld", &n);
    
            for(ll i = 1; i * i <= n; i ++){
                cnt ++;                 //不超过n的完全平方数计数.
    
                if(2 * i * i <= n)    
                    cnt ++;             //不超过n/2的完全平方数计数.
            }
    
            printf("Case %d: %lld
    ", ++ kase, n - cnt);
        }
    
        return 0;
    }
    
    

  • 相关阅读:
    页面上一些小icon的制作方法及技术选择
    移动端h5页面touch事件与点击穿透问题
    浅析 jquerydom操作方法--remove(),detach(),empty()
    jquery中attr和prop的区别
    正则表达式的基本入门
    浏览器对中文标点符号折行的处理差异
    关于阴影:box-shadow
    ubuntu nginx ftp 配置图片服务器
    ubuntu 18 安装ftp 并远程配置访问用户
    WIn10系统软件默认安装c盘后消失看不见问题
  • 原文地址:https://www.cnblogs.com/satchelpp/p/11939382.html
Copyright © 2011-2022 走看看