zoukankan      html  css  js  c++  java
  • 手写神经网络

    要求

      用Python中numpy库手写一个单层神经网络(严格来说是用逻辑回归做二分类问题),用GD(Gradient Descent)作为optimizer。

    Gradient Descent

      见西瓜书

    Stochastic Gradient Descent

      相当于每次只随机挑出一条数据forward然后优化,其他和Gradient Descent基本一样

    代码要点

      熟悉numpy相关的函数接口

        np.random.randn()  #产生符合高斯分布的随机数

        np.random.randint()  #产生随机整数

        np.around()  #四舍五入,相当于round()

        np.dot()  #向量乘法,点乘用*

        np.sum()  #求和,可以用于向量求和

      训练流程

        1. data preparation

        2. forward data to model

        3. compute loss  #其实自己写的时候不算loss也是可以的,只要对其求导就可以了

        4. optimize  #使用各种优化算法,更新参数

        5. predict  #测试

        (如果有分batch的话还有这一步需要准备)

    import numpy as np
    
    # generate x in [100, 4], which follows the Gaussian distribution 
    # y = round(sigmoid(x*w+b)) w = [0.3, 0.6, -0.7, -1.3] b = 0.2
    
    # Given x, y, use GD(SGD); get [w,b]
    
    # two class logistic regression
    
    
    def sigmoid(x, derivative = False):
        sigm = 1 / (1 + np.exp(-x))
        if derivative:
            return sigm * (1 - sigm)
        return sigm
    
    def generate_data(x):
        w = np.array([0.3, 0.6, -0.7, -1.3])
        b = np.array(0.2)
        y = np.around(sigmoid(np.dot(x,w)+b))
        return y
    
    def forward(x, w, b):
        return sigmoid(np.dot(x,w)+b)
    
    def compute_loss(y_, y):
        m = y_.shape[0]
        assert m == y.shape[0]
        return -1/m * np.sum(y * np.log(y_) + (1 - y) * np.log(1 - y_))
    
    def GD_optimizer(w, b, x, y, y_, lr=0.01):
        # backpropagate
        m = y.shape[0]
        dw = - 1/m * np.dot((y - y_), x)
        db = - 1/m * np.sum(y- y_)
        # renew parameter
        w = w - lr * dw
        b = b - lr * db
        return w, b
            
    def predict(w, b):
        x_test = np.random.randn(200,4)
        y_test = generate_data(x_test)
        y_ = np.around(forward(x_test, w, b))
        acc = np.sum(y_test == y_) / 200
        print("acc:", acc)
    
    if __name__ == "__main__":
        # initialization
        x = np.random.randn(1000,4)
        w = np.random.randn(4)
        b = np.zeros((1))
        y = generate_data(x)
    
        iter_num = 5001
    
        #train
        for i in range(iter_num):
            # forward
            y_ = forward(x, w, b)
            # compute loss
            loss = compute_loss(y_, y)
            # renew parameter
            w, b = GD_optimizer(w, b, x, y, y_)
            # print info
            if i % 100 == 0:
                print("loss after iteration {}: {}".format(i, loss) )
                predict(w, b)
    
        print("w:", w)
        print("b:", b)
        predict(w, b)

    其他变种

    改为softmax多分类

      将损失函数改为对softmax交叉熵的loss,optimize中求导的地方也要稍微改改

    改为SGD(随机梯度下降)optimizer

      每个epoch都先用np.random.shuffle()打乱数据,然后再每次forward一条数据进行optimize,相当于loss不求平均,而是只有一条数据的loss

    改为多层神经网络

      参数变多,求导的地方也会变得复杂一些

    softmax分类损失函数求导:

    1. https://blog.csdn.net/wangyangzhizhou/article/details/75088106

    2. https://blog.csdn.net/qian99/article/details/78046329

    逻辑回归损失函数求导:(和softmax基本差不多)

    https://www.cnblogs.com/zhongmiaozhimen/p/6155093.html

  • 相关阅读:
    IS-IS协议的内容
    OSPF协议---进阶篇
    OSPF协议-summary-LSA(LSA-3)
    OSPF协议-外部路由(LSA-4和LSA-5)
    OSPF的特殊区域和其他特性
    BGP的反射器和联盟
    neo4j 初级使用笔记
    Flink窗口介绍及应用
    HDFS之append数据到已存在文件中
    Random Projection在k-means的应用
  • 原文地址:https://www.cnblogs.com/sbj123456789/p/10519974.html
Copyright © 2011-2022 走看看