Question
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
即求最长回文子串(注意和最长回文子序列的区别,子串是连续的子序列可以是非连续的)
Example 1:
Input: "babad" Output: "bab" Note: "aba" is also a valid answer.
Example 2:
Input: "cbbd" Output: "bb"
方法一:暴力枚举
枚举所有的子串,共O(n^2)次,再对每一个子串检查是否是回文的,花费时间O(n),所以一共O(n^3)
方法二:动态规划
先确定状态:状态f(i, j) 表示从i到j的子串是否是回文的,是值为1,不是值为0
容易写出状态转移方程:
当 s[i] == s[j] 时,f(i, j) = f(i+1, j-1)
当 s[i] == s[j] 且 i+1 == j 时,f(i, j) = 1
当 i == j 时,f(i, j) = 1
class Solution: def longestPalindrome(self, s: str) -> str: len_s = len(s) longest_start = 0 longest_end = 0 longest_length = 1 dp = [[0 for i in s] for j in s] for j in range(len_s): for i in range(j+1): if s[i] == s[j] and (j-i <= 1 or dp[i+1][j-1]) : dp[i][j] = 1 if dp[i][j] == 1 and j-i+1 > longest_length: longest_start = i longest_end = j longest_length = j - i + 1 return s[longest_start:longest_end+1]
时间复杂度为O(n^2)
此方法枚举时从左往右枚举;也可以从一个回文子串的中间向两边枚举,不用动归
方法三:Manacher算法
(未完待续)