zoukankan      html  css  js  c++  java
  • uva 10004 Bicoloring

    题目翻译:
    1976年“四色定理”在计算机的帮助下被证明。 这个定理宣告任何一个地图都可以只用四种颜色来填充, 并且没有相邻区域的颜色是相同的。
    现在让你解决一个更加简单的问题。 你必须决定给定的任意相连的图能不能够用两种颜色填充。 就是说,如果给其中一个分配一种颜色, 要让所有直接相连的两个节点不能是相同的颜色。 为了让问题更简单,你可以假设:
    1. 没有节点是连接向它自己的。
    2. 是无向图。  即如果a连接b, 那么b也是连接a的
    3. 图是强连接的。就是说至少有一条路径可走向所有节点。

     

    方法一:广搜BFS
    由题目可知,对于每个结点,所有和它相接的点必须和这个点颜色不一样。那么,很自然可以用广搜来做: 选取其中一点,给这个点赋值为一种颜色,可以用数字0来代替,然后进行广搜,那么所有和他相邻的点就可以赋值为另一种颜色,可以用1来代替。如此搜下去, 如果遇到一个点是已经赋值过了的,那就进行判断,他已经有的值是不是和这次要给它的值相同的,如果是相同的,就继续。如果不同的话,那么直接判断为不可以。

     

    方法二: 深搜DFS
    同样,这题也可以用深搜来做。 深搜的基本思想是,沿着一个方向不断搜下去,没走一步都进行染色,当前这一点的色和上一点的色相反。如果搜到了一个染过的(即有回环),那么也进行判断,已经有的色是不是和这次给它的颜色是否一致的。不一致的话,就判断为不可以。

    //bfs
    #include <stdio.h> #include <string.h> #include <queue> #define N 220 using namespace std; queue <int> q; bool g[N][N]; int vis[N]; int n,m; int main() { int i,j,u,v,ok; int tmp,colour; while(scanf("%d",&n)!=EOF && n) { scanf("%d",&m); memset(g,0,sizeof(g)); memset(vis,0,sizeof(vis)); while(!q.empty()) q.pop(); for(i=1; i<=m; i++) { scanf("%d%d",&u,&v); g[u][v]=g[v][u]=1; } vis[0]=1; q.push(0); while(!q.empty()) { ok=1; tmp=q.front(); colour=vis[tmp]; for(i=0; i<n; i++) if(g[tmp][i]) { if(!vis[i]) { vis[i]=-colour; q.push(i); } else if( vis[i]!= (-colour)) { ok=0; break; } } if(!ok) break; q.pop(); } if(q.empty()) printf("BICOLORABLE.\n"); else printf("NOT BICOLORABLE.\n"); } return 0; }
    //dfs
    #include <stdio.h>
    #include <string.h>
    #define N 220
    bool g[N][N];
    int vis[N];
    int n,m;
    
    bool dfs(int s ,int colour)
    {
        int i;
        vis[s]=colour;
        for(i=0; i<n; i++) if(g[s][i])
        {
            if(!vis[i]) 
            {
                if(!dfs(i,-colour)) return 0;
            }
            else if( vis[i]!= (-colour) )
                return 0;
        }
    
        return 1;
    }
    
    int main()
    {
        int i,u,v;
        while(scanf("%d",&n)!=EOF && n)
        {
            scanf("%d",&m);
            memset(g,0,sizeof(g));
            memset(vis,0,sizeof(vis));
            for(i=0; i<m; i++)
            {
                scanf("%d%d",&u,&v);
                g[u][v]=g[v][u]=1;
            }
    
            for(i=0; i<n; i++) if(!vis[i])
                if(!dfs(i,1)) break;
    
            if(i<n) printf("NOT BICOLORABLE.\n");
            else    printf("BICOLORABLE.\n");
        }
    }

     

  • 相关阅读:
    图的存储代码实现
    最小生成树算法
    图的遍历
    图的存储结构
    ftp服务器的配置
    利用c++利用odbc连接mysql数据库
    测试odbc连接sqlsever数据库是否成功的代码
    gk888t打印机安装
    Win10下windows mobile设备中心连接不上的方法无法启动
    js千分位加逗号和四舍五入保留两位小数
  • 原文地址:https://www.cnblogs.com/scau20110726/p/2759700.html
Copyright © 2011-2022 走看看